A FAST NUMERICAL METHOD FOR SOLVING A REGULARIZED PROBLEM ASSOCIATED WITH OBSTACLE PROBLEMS

被引:2
|
作者
Yuan, DaMing [1 ,2 ]
Li, Xi [1 ]
Lei, ChengFeng [1 ]
机构
[1] Nanchang Hangkong Univ, Coll Math & Informat Sci, Nanchang 330063, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
基金
美国国家科学基金会;
关键词
Rung-Kutta method; level set method; obstacle problem; ELLIPTIC VARIATIONAL-INEQUALITIES; MONOTONE MULTIGRID METHODS; SET METHODS; ALGORITHMS; EQUATIONS; FRONTS;
D O I
10.4134/JKMS.2012.49.5.893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Kirsi Majava and Xue-Cheng Tai [12] proposed a modified level set method for solving a free boundary problem associated with unilateral obstacle problems. The proximal bundle method and gradient method were applied to solve the nonsmooth minimization problems and the regularized problem, respectively. In this paper, we extend this approach to solve the bilateral obstacle problems and employ Rung-Kutta method to solve the initial value problem derived from the regularized problem. Numerical experiments are presented to verify the efficiency of the methods.
引用
收藏
页码:893 / 905
页数:13
相关论文
共 50 条
  • [31] Regularized extragradient method for solving parametric multicriteria equilibrium programming problem
    A. S. Antipin
    L. A. Artem’eva
    F. P. Vasil’ev
    Computational Mathematics and Mathematical Physics, 2010, 50 : 1975 - 1989
  • [32] On a regularized Levenberg-Marquardt method for solving nonlinear inverse problems
    Jin, Qinian
    NUMERISCHE MATHEMATIK, 2010, 115 (02) : 229 - 259
  • [33] Implementation of Numerical Method for Solving Electrostatic Problem
    Volkhin, Dmitry I.
    Devyatkov, Gennady N.
    2014 15TH INTERNATIONAL CONFERENCE OF YOUNG SPECIALISTS ON MICRO/NANOTECHNOLOGIES AND ELECTRON DEVICES (EDM), 2014, : 122 - 124
  • [34] A numerical method for solving an inverse thermoacoustic problem
    Kabanikhin S.I.
    Krivorot'ko O.I.
    Shishlenin M.A.
    Kabanikhin, S. I. (kabanikhin@sscc.nsc.ru), 1600, Maik Nauka Publishing / Springer SBM (06): : 34 - 39
  • [35] A Numerical Method for Solving Optimal Control Problems
    Topchishvili, A.
    Jibladze, N.
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2005, 2005, : 396 - 401
  • [36] A numerical method for solving shortest path problems
    M. H. Noori Skandari
    M. Ghaznavi
    Calcolo, 2018, 55
  • [37] A numerical method for solving shortest path problems
    Skandari, M. H. Noori
    Ghaznavi, M.
    CALCOLO, 2018, 55 (01)
  • [38] On a numerical method of solving conflict control problems
    Kornev, D. V.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2012, (01): : 67 - 68
  • [39] NUMERICAL-METHOD FOR SOLVING DIRICHLET PROBLEM
    SCOTONI, I
    VASCON, M
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (04): : 615 - 620
  • [40] A numerical method for solving inverse eigenvalue problems
    Dai, H
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 1999, 33 (05) : 1003 - 1017