A Deep Convolutional Neural Network with Selection Units for Super-Resolution

被引:97
|
作者
Choi, Jae-Seok [1 ]
Kim, Munchurl [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch EE, Daejeon, South Korea
关键词
IMAGE SUPERRESOLUTION;
D O I
10.1109/CVPRW.2017.153
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rectified linear units (ReLU) are known to be effective in many deep learning methods. Inspired by linear-mapping technique used in other super-resolution (SR) methods, we reinterpret ReLU into point-wise multiplication of an identity mapping and a switch, and finally present a novel nonlinear unit, called a selection unit (SU). While conventional ReLU has no direct control through which data is passed, the proposed SU optimizes this on-off switching control, and is therefore capable of better handling nonlinearity functionality than ReLU in a more flexible way. Our proposed deep network with SUs, called SelNet, was top-5th ranked in NTIRE2017 Challenge, which has a much lower computation complexity compared to the top-4 entries. Further experiment results show that our proposed SelNet outperforms our baseline only with ReLU (without SUs), and other state-of-the-art deep-learning-based SR methods.
引用
收藏
页码:1150 / 1156
页数:7
相关论文
共 50 条
  • [31] Super-Resolution Based on Noise Resistance Deep Convolutional Network
    Li, Hengjian
    Gao, Yunxing
    Dong, Jiwen
    Feng, Guang
    PROCEEDINGS OF 2018 6TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (ICBCB 2018), 2018, : 88 - 94
  • [32] Diffused Convolutional Neural Network for Hyperspectral Image Super-Resolution
    Jia, Sen
    Zhu, Shuangzhao
    Wang, Zhihao
    Xu, Meng
    Wang, Weixi
    Guo, Yujuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [33] Improvement of a Subpixel Convolutional Neural Network for a Super-Resolution Image
    Agalday, Muhammed Fatih
    Cinar, Ahmet
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [34] Deep Differential Convolutional Network for Single Image Super-Resolution
    Liu, Peng
    Hong, Ying
    Liu, Yan
    IEEE ACCESS, 2019, 7 : 37555 - 37564
  • [35] Super-Resolution Image Restoration Using Convolutional Neural Network
    Yu, Nedzelskyi O.
    Lashchevska, N. O.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2023, (91): : 79 - 86
  • [36] HYPERSPECTRAL IMAGE SUPER-RESOLUTION VIA CONVOLUTIONAL NEURAL NETWORK
    Mei, Shaohui
    Yuan, Xin
    Ji, Jingyu
    Wan, Shuai
    Hou, Junhui
    Du, Qian
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4297 - 4301
  • [37] Convolutional Neural Network with Gradient Information for Image Super-Resolution
    Tang, Yinggan
    Zhu, Xiaoning
    Cui, Mingyong
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1714 - 1719
  • [38] A Dual-Scale Convolutional Neural Network for Super-Resolution
    Liu, Jing
    He, Shuai
    Xue, Yuxin
    Zhang, Xiaoyan
    THIRTEENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2021), 2021, 11878
  • [39] HYPERSPECTRAL SUPER-RESOLUTION BY UNSUPERVISED CONVOLUTIONAL NEURAL NETWORK AND SURE
    Nguyen, Han V.
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    Mura, Mauro Dalla
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 903 - 906
  • [40] Image super-resolution using a dilated convolutional neural network
    Lin, Guimin
    Wu, Qingxiang
    Qiu, Lida
    Huang, Xixian
    NEUROCOMPUTING, 2018, 275 : 1219 - 1230