A NOTE ON CONVOLUTION OPERATORS IN WHITE NOISE CALCULUS

被引:10
|
作者
Obata, Nobuaki [1 ]
Ouerdiane, Habib [2 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
[2] Univ Tunis El Manar, Fac Sci, Dept Math, Tunis 1060, Tunisia
基金
日本学术振兴会;
关键词
White noise calculus; infinite-dimensional holomorphic function; convolution operator; convolution product; Wick product; S-transform; Laplace transform; HOLOMORPHIC-FUNCTIONS; FOCK SPACE; GROWTH;
D O I
10.1142/S0219025711004535
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive some characteristic properties of the convolution operator acting on white noise functions and prove that the convolution product of white noise distributions coincides with their Wick product. Moreover, we show that the S-transform and the Laplace transform coincide on Fock space.
引用
收藏
页码:661 / 674
页数:14
相关论文
共 50 条
  • [41] A note on the functional calculus for unbounded self-adjoint operators
    Fitzpatrick, Patrick M.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2013, 13 (02) : 633 - 640
  • [42] NOTE ON GENERALIZED WHITE NOISE FUNCTIONALS
    Hida, Takeyuki
    QUANTUM BIO-INFORMATICS III: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2010, 26 : 101 - 109
  • [43] Malliavin calculus for white noise driven parabolic SPDEs
    Bally, V
    Pardoux, E
    POTENTIAL ANALYSIS, 1998, 9 (01) : 27 - 64
  • [44] Malliavin Calculus for White Noise Driven Parabolic SPDEs
    Vlad Bally
    Etienne Pardoux
    Potential Analysis, 1998, 9 : 27 - 64
  • [45] Levy white noise calculus based on interaction exponents
    Huang, ZY
    Wu, Y
    ACTA APPLICANDAE MATHEMATICAE, 2005, 88 (03) : 251 - 268
  • [46] Stochastic integral convergence: A white noise calculus approach
    Ng, Chi Tim
    Chan, Ngai Hang
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 2035 - 2057
  • [47] FACTORIZATION PROPERTY OF CONVOLUTIONS OF WHITE NOISE OPERATORS
    Ji, Un Cig
    Kim, Young Yi
    Park, Yoon Jung
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (04): : 463 - 476
  • [48] DISCRETE APPROXIMATION TO OPERATORS IN WHITE NOISE ANALYSIS
    Si, Si
    QUANTUM BIO-INFORMATICS IV: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2011, 28 : 311 - 319
  • [49] On Solvable Lie Algebras of White Noise Operators
    Bock, Wolfgang
    Canama, Janeth
    Petalcorin, Gaudencio
    SYMMETRY-BASEL, 2022, 14 (11):
  • [50] A characterization theorem for operators on white noise functionals
    Chung, DM
    Chung, TS
    Ji, UC
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1999, 51 (02) : 437 - 447