Operational amplifiers operating in temperature range from 300 to 4.2 K

被引:11
|
作者
Svindrych, Z. [2 ]
Janu, Z. [1 ]
Soukup, F. [1 ]
Tichy, R. [1 ]
机构
[1] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic
[2] Charles Univ Prague, Fac Math & Phys, CR-18000 Prague 8, Czech Republic
关键词
low-noise amplifiers; CMOS; cryoelectronics;
D O I
10.1016/j.cryogenics.2008.03.009
中图分类号
O414.1 [热力学];
学科分类号
摘要
We present preamplifiers for frequencies from dc to few 10 MHz operating over temperature range from 300 to 4.2 K. Typical application of these circuits which use CMOS operational amplifiers is to match high impedance cryogenic sensors with low impedance cables to lead out a signal to room temperature electronics without bandwidth limiting while preserve signal to noise ratio and linearity. Temperature dependence of electrical characteristics is shown including dissipated power and input voltage noise density spectra. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:160 / 165
页数:6
相关论文
共 50 条
  • [21] Mechanical properties of the CoCrFeNiMnVx high entropy alloys in temperature range 4.2-300 K
    Tabachnikova, E. D.
    Podolskiy, A. V.
    Laktionova, M. O.
    Bereznaia, N. A.
    Tikhonovsky, M. A.
    Tortika, A. S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 698 : 501 - 509
  • [22] PRECISION AUTOMATIC CRYOSTAT-TEMPERATURE REGULATOR FOR RANGE 4.2-300 DEGREES K
    PADO, GS
    ASTROV, DN
    BAIBAKOV, VI
    DRAGUNOV, VS
    ORLOVA, MP
    MEDVEDEV, VA
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES-USSR, 1968, (01): : 216 - &
  • [23] Mechanical Properties of Ultrafine-Grained Aluminum in the Temperature Range 4.2-300 K
    Orlova, T. S.
    Shpeizman, V. V.
    Mavlyutov, A. M.
    Latynina, T. A.
    Averkin, A. I.
    Timashov, R. B.
    PHYSICS OF THE SOLID STATE, 2020, 62 (06) : 1048 - 1055
  • [24] Mechanical properties of ultrafine-grain zirconium in the temperature range 4.2-300 K
    Tabachnikova, E. D.
    Podol'skii, A. V.
    Bengus, V. Z.
    Smirnov, S. N.
    Natsik, V. D.
    Azhazha, V. M.
    Tikhonovskii, M. A.
    Velikodnyi, A. N.
    Andrievskaya, N. F.
    Storozhilov, G. E.
    Tikhonovskaya, T. M.
    LOW TEMPERATURE PHYSICS, 2008, 34 (11) : 969 - 975
  • [25] Structural states and structural reconstructions in lead difluoride in 4.2-300 K temperature range
    Shmytko, IM
    Savchenko, IB
    Klassen, NV
    Bagaytdinov, BS
    Emelchenko, GA
    Kulakov, AD
    Sinitsyn, VV
    FIZIKA TVERDOGO TELA, 1996, 38 (04): : 1240 - 1250
  • [26] A MICROCOMPUTER-CONTROLLED VACUUM ADIABATIC CALORIMETER FOR THE TEMPERATURE-RANGE 4.2-K-300-K
    RAMAN, S
    MURTY, NSN
    ROY, KS
    RAO, VV
    RANGARAJAN, G
    PRAMANA, 1982, 19 (02) : 151 - 157
  • [27] Operation of the TVO temperature sensors in the range from 4.2 K up to 425 K
    Filippov, YP
    Smirnova, TI
    CRYOGENICS, 2004, 44 (10) : 735 - 739
  • [28] A SIMPLE APPARATUS FOR THE MEASUREMENT OF THERMOELECTRIC-POWER IN THE TEMPERATURE-RANGE 4.2-300-K
    RAJEEV, KP
    VASANTHACHARYA, NY
    PRAMANA, 1988, 30 (01) : 29 - 33
  • [29] DISLOCATION DENSITY IN LIF CRYSTALS DEFORMED IN THE TEMPERATURE-RANGE BETWEEN 4.2-300 K
    KAUFMANN, KI
    LUBENETS, SV
    SAMOILOVA, TV
    SMIRNOV, BI
    FIZIKA TVERDOGO TELA, 1984, 26 (03): : 702 - 707
  • [30] Analysis of resistivity in nano-interconnect: Full range (4.2-300K) temperature characterization
    Guillaumond, JF
    Arnaud, L
    Mourier, T
    Fayolle, M
    Pesci, O
    Reimbold, G
    PROCEEDINGS OF THE IEEE 2003 INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE, 2003, : 132 - 134