Functional evidence of post-transcriptional regulation by pseudogenes

被引:62
|
作者
Muro, Enrique M. [1 ]
Mah, Nancy [1 ]
Andrade-Navarro, Miguel A. [1 ]
机构
[1] Max Delbruck Ctr Mol Med MDC, D-13125 Berlin, Germany
关键词
Pseudogenes; ncRNA; Natural antisense transcripts; siRNA; miRNA; MESSENGER-RNA STABILITY; HOMOLOGOUS CODING GENE; FETAL GAMMA-GLOBIN; PROCESSED PSEUDOGENES; GENOME ANNOTATION; RECEPTOR GENES; CHARON PHAGES; MOUSE OOCYTES; DNA CLONING; EVOLUTION;
D O I
10.1016/j.biochi.2011.07.024
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pseudogenes have been mainly considered as functionless evolutionary relics since their discovery in 1977. However, multiple mechanisms of pseudogene functionality have been proposed both at the transcriptional and post-transcriptional level. This review focuses on the role of pseudogenes as post-transcriptional regulators. Two lines of research have recently presented strong evidence of their potential function as post-transcriptional regulators of the corresponding parental genes from which they originate. First, pseudogene genomic sequences can encode siRNAs. Second, pseudogene transcripts can act as indirect post-transcriptional regulators decoying ncRNA, in particular miRNAs that target the parental gene. This has been demonstrated for PTEN and KRAS, two genes involved in tumorigenesis. The role of pseudogenes in disease has not been proven and seems to be the next research landmark. In this review, we chronicle the events following the initial discovery of the 'useless' pseudogene to its breakthrough as a functional molecule with hitherto unbeknownst potential to influence human disease. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1916 / 1921
页数:6
相关论文
共 50 条
  • [21] Post-transcriptional regulation in root development
    Stauffer, Eva
    Maizel, Alexis
    WILEY INTERDISCIPLINARY REVIEWS-RNA, 2014, 5 (05) : 679 - 696
  • [22] Post-transcriptional regulation of proinflammatory proteins
    Anderson, P
    Phillips, K
    Stoecklin, G
    Kedersha, N
    JOURNAL OF LEUKOCYTE BIOLOGY, 2004, 76 (01) : 42 - 47
  • [23] Transcription and post-transcriptional regulation of spermatogenesis
    Bettegowda, Anilkumar
    Wilkinson, Miles F.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2010, 365 (1546) : 1637 - 1651
  • [24] Post-transcriptional regulation in metabolic diseases
    Kim, Wook
    Lee, Eun Kyung
    RNA BIOLOGY, 2012, 9 (06) : 772 - 780
  • [25] Post-transcriptional regulation of gene expression
    Lipshitz, Howard D.
    Claycomb, Julie M.
    Smibert, Craig A.
    METHODS, 2017, 126 : 1 - 2
  • [26] Post-transcriptional regulation in cancer progression
    Jewer, Michael
    Findlay, Scott D.
    Postovit, Lynne-Marie
    JOURNAL OF CELL COMMUNICATION AND SIGNALING, 2012, 6 (04) : 233 - 248
  • [27] Post-transcriptional regulation of myelin formation
    Zearfoss, N. Ruth
    Farley, Brian M.
    Ryder, Sean P.
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2008, 1779 (08): : 486 - 494
  • [28] Post-transcriptional regulation of mitochondrial function
    Schatton, Desiree
    Rugarli, Elena I.
    CURRENT OPINION IN PHYSIOLOGY, 2018, 3 : 6 - 15
  • [29] POST-TRANSCRIPTIONAL REGULATION OF COLLAGEN BIOSYNTHESIS
    BHATNAGA.RS
    RAPAKA, SSR
    FEDERATION PROCEEDINGS, 1971, 30 (03) : 1167 - &
  • [30] Post-transcriptional regulation of mitochondrial function
    Rugarli, E.
    FEBS OPEN BIO, 2019, 9 : 17 - 17