Immersed Boundary-Lattice Boltzmann Coupling Scheme for Fluid-Structure Interaction with Flexible Boundary

被引:13
|
作者
Cheng, Yongguang [2 ]
Zhang, Hui [1 ]
Liu, Chang [2 ]
机构
[1] Wuhan Univ, Sch Elect Engn, Wuhan 430072, Peoples R China
[2] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
关键词
Lattice Boltzmann method; immersed boundary method; fluid-structure interaction; flexible boundary; complex boundary; HEART DIASTOLIC FUNCTION; NAVIER-STOKES EQUATIONS; CIRCULAR-CYLINDER; INTERFACE METHOD; PARACHUTE SIMULATION; COMPUTATIONAL MODEL; FLOWS;
D O I
10.4208/cicp.301009.211210s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Coupling the immersed boundary (IB) method and the lattice Boltzmann (LB) method might be a promising approach to simulate fluid-structure interaction (FSI) problems with flexible structures and complex boundaries, because the former is a general simulation method for FSIs in biological systems, the latter is an efficient scheme for fluid flow simulations, and both of them work on regular Cartesian grids. In this paper an IB-LB coupling scheme is proposed and its feasibility is verified. The scheme is suitable for FSI problems concerning rapid flexible boundary motion and a large pressure gradient across the boundary. We first analyze the respective concepts, formulae and advantages of the IB and LB methods, and then explain the coupling strategy and detailed implementation procedures. To verify the effectiveness and accuracy, FSI problems arising from the relaxation of a distorted balloon immersed in a viscous fluid, an unsteady wake flow caused by an impulsively started circular cylinder at Reynolds number 9500, and an unsteady vortex shedding flow past a suddenly started rotating circular cylinder at Reynolds number 1000 are simulated. The first example is a benchmark case for flexible boundary FSI with a large pressure gradient across the boundary, the second is a fixed complex boundary problem, and the third is a typical moving boundary example. The results are in good agreement with the analytical and existing numerical data. It is shown that the proposed scheme is capable of modeling flexible boundary and complex boundary problems at a second-order spatial convergence; the volume leakage defect of the conventional IB method has been remedied by using a new method of introducing the unsteady and non-uniform external force; and the LB method makes the IB method simulation simpler and more efficient.
引用
收藏
页码:1375 / 1396
页数:22
相关论文
共 50 条
  • [11] An immersed boundary-lattice Boltzmann method with hybrid multiple relaxation times for viscoplastic fluid-structure interaction problems
    Hui, Da
    Wang, Zekun
    Cai, Yunan
    Wu, Wenbin
    Zhang, Guiyong
    Liu, Moubin
    APPLIED OCEAN RESEARCH, 2022, 119
  • [12] A lattice Boltzmann based implicit immersed boundary method for fluid-structure interaction
    Hao, Jian
    Zhu, Luoding
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) : 185 - 193
  • [13] COMPUTATIONAL STUDY OF IMMERSED BOUNDARY - LATTICE BOLTZMANN METHOD FOR FLUID-STRUCTURE INTERACTION
    Eichler, Pavel
    Fucik, Radek
    Straka, Robert
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (03): : 819 - 833
  • [14] Fluid-structure interaction method using immersed boundary and lattice Boltzmann method
    Liu, Ketong
    Tang, Aiping
    Liu, Yuejun
    Wang, Nan
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43 (01): : 61 - 66
  • [15] GPU acceleration of FSI simulations by the immersed boundary-lattice Boltzmann coupling scheme
    Wu, Jiayang
    Cheng, Yongguang
    Zhou, Wei
    Zhang, Chunze
    Diao, Wei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (04) : 1194 - 1205
  • [16] Fluid-structure interaction simulation based on immersed boundary-lattice Boltzmann flux solver and absolute nodal coordinate formula
    Liu, Fan
    Liu, Gang
    Shu, Chang
    PHYSICS OF FLUIDS, 2020, 32 (04)
  • [17] A non-staggered coupling of finite element and lattice Boltzmann methods via an immersed boundary scheme for fluid-structure interaction
    Li, Zhe
    Favier, Julien
    COMPUTERS & FLUIDS, 2017, 143 : 90 - 102
  • [18] Comparative Study of Implicit and Explicit Immersed Boundary-Lattice Boltzmann Methods for Simulation of Fluid-Structure Interactions
    Shao, J. Y.
    Liu, N. Y.
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (05) : 1173 - 1190
  • [19] Efficient coupling of direct forcing immersed boundary-lattice Boltzmann method and finite element method to simulate fluid-structure interactions
    Qin, Jianhua
    Andreopoulos, Yiannis
    Jiang, Xiaohai
    Dong, Guodan
    Chen, Zhihua
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2020, 92 (06) : 545 - 572
  • [20] Analysis of the immersed boundary method for turbulent fluid-structure interaction with Lattice Boltzmann method
    Cheylan, Isabelle
    Fringand, Tom
    Jacob, Jerome
    Favier, Julien
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 492