Dimensionality reduction and clustering of time series for anomaly detection in a supermarket heating system

被引:1
|
作者
Salmina, Lorenzo [1 ]
Castello, Roberto [1 ]
Stoll, Justine [1 ]
Scartezzini, Jean-Louis [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Solar Energy & Bldg Phys Lab, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
10.1088/1742-6596/2042/1/012027
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A timely identification of an anomalous functioning of the energy system of an industrial building would increase the efficiency and the resilience of the energy infrastructure, beside reducing the economic wastage. This work has been inspired by the need of identifying, for a series of supermarket buildings in Switzerland, the failures happening in their heating systems across the years in an unsupervised and easy-to-visualize fashion for the building managers. The lack of any a-priori label differentiating between typical and anomalous behaviors calls for the usage of unsupervised machine learning methods to extract the relevant features to describe the system operations, to reduce the dimension of the feature space, and to cluster together similar patterns of operations. The method is validated on a standard supermarket building, where it successfully discriminates winter and summer operations from periods of refurbishment or malfunctioning of the heating system.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] ADET: anomaly detection in time series with linear time
    Zhang, Chunkai
    Zuo, Wei
    Yin, Ao
    Wang, Xuan
    Liu, Chuanyi
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (01) : 271 - 280
  • [42] An anomaly detection model for multivariate time series with anomaly perception
    Wei, Dong
    Sun, Wu
    Zou, Xiaofeng
    Ma, Dan
    Xu, Huarong
    Chen, Panfeng
    Yang, Chaoshu
    Chen, Mei
    Li, Hui
    PeerJ Computer Science, 2024, 10
  • [43] ADET: anomaly detection in time series with linear time
    Chunkai Zhang
    Wei Zuo
    Ao Yin
    Xuan Wang
    Chuanyi Liu
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 271 - 280
  • [44] Anomaly Detection in Time Series: A Comprehensive Evaluation
    Schmidl, Sebastian
    Wenig, Phillip
    Papenbrock, Thorsten
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (09): : 1779 - 1797
  • [45] A SURVEY OF RESEARCH ON ANOMALY DETECTION FOR TIME SERIES
    Wu, Hu-Sheng
    2016 13TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2016, : 426 - 431
  • [46] Unsupervised Anomaly Detection for Seasonal Time Series
    von Werra, Leandro
    Tunstall, Lewis
    Hofer, Simon
    2019 6TH SWISS CONFERENCE ON DATA SCIENCE (SDS), 2019, : 136 - 137
  • [47] Contrastive Time-Series Anomaly Detection
    Kim, Hyungi
    Kim, Siwon
    Min, Seonwoo
    Lee, Byunghan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (10) : 5053 - 5065
  • [48] Generative Anomaly Detection in Multivariate Time Series
    Hoh, M.
    Schöttl, A.
    Schaub, H.
    Leuze, N.
    Automation, Robotics and Communications for Industry 4.0/5.0, 2023, 2023 : 171 - 174
  • [49] Research of Anomaly Detection Based on Time Series
    Wang, Guilan
    Wang, Zhenqi
    Luo, Xianjin
    2009 WRI WORLD CONGRESS ON SOFTWARE ENGINEERING, VOL 1, PROCEEDINGS, 2009, : 444 - 448
  • [50] AnomalyKiTS: Anomaly Detection Toolkit for Time Series
    Patel, Dhaval
    Ganapavarapu, Giridhar
    Jayaraman, Srideepika
    Lin, Shuxin
    Bhamidipaty, Anuradha
    Kalagnanam, Jayant
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 13209 - 13211