Bootstrap inference for local populations

被引:3
|
作者
Lunneborg, CE
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[2] Univ Washington, Dept Psychol, Seattle, WA 98195 USA
来源
DRUG INFORMATION JOURNAL | 2001年 / 35卷 / 04期
关键词
available cases; bootstrap inference; measurement error; randomization; resampling;
D O I
10.1177/009286150103500429
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The randomized available case study, in which a nonrandom set of cases (patients, animals, laboratory runs) is randomized among two or more treatments, is a staple of biomedical research. Traditionally, such studies have been analyzed as though the cases were a random sample from an infinitely large population (1). The resulting statistical inferences address incorrect populations. More importantly, in the presence of response measurement error these inferences are inappropriate for the, correct populations, understating the differential impact of treatment (2). In this paper I develop and illustrate a nonparametric bootstrap approach to inference in such studies, an approach that is faithful to the local origins of the randomized cases and can account for the influence of measurement error.
引用
收藏
页码:1327 / 1342
页数:16
相关论文
共 50 条
  • [1] Bootstrap Inference for Local Populations
    Clifford E. Lunneborg
    Drug information journal : DIJ / Drug Information Association, 2001, 35 : 1327 - 1342
  • [2] Local block bootstrap inference for trending time series
    Dowla, Arif
    Paparoditis, Efstathios
    Politis, Dimitris N.
    METRIKA, 2013, 76 (06) : 733 - 764
  • [3] Bootstrap inference in local polynomial regression of time series
    Maria Lucia Parrella
    Cosimo Vitale
    Statistical Methods and Applications, 2007, 16 : 117 - 139
  • [4] Bootstrap inference in local polynomial regression of time series
    Parrella, Maria Lucia
    Vitale, Cosimo
    STATISTICAL METHODS AND APPLICATIONS, 2007, 16 (01): : 117 - 139
  • [5] Local block bootstrap inference for trending time series
    Arif Dowla
    Efstathios Paparoditis
    Dimitris N. Politis
    Metrika, 2013, 76 : 733 - 764
  • [6] Inference for local distributions at high sampling frequencies: A bootstrap approach
    Hounyo, Ulrich
    Varneskov, Rasmus T.
    JOURNAL OF ECONOMETRICS, 2020, 215 (01) : 1 - 34
  • [7] Bootstrap inference in econometrics
    MacKinnon, JG
    CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 2002, 35 (04): : 615 - 645
  • [8] Fast and accurate inference of local ancestry in Latino populations
    Baran, Yael
    Pasaniuc, Bogdan
    Sankararaman, Sriram
    Torgerson, Dara G.
    Gignoux, Christopher
    Eng, Celeste
    Rodriguez-Cintron, William
    Chapela, Rocio
    Ford, Jean G.
    Avila, Pedro C.
    Rodriguez-Santana, Jose
    Burchard, Esteban Gonzalez
    Halperin, Eran
    BIOINFORMATICS, 2012, 28 (10) : 1359 - 1367
  • [9] On bootstrap inference in cointegrating regressions
    Psaradakis, Z
    ECONOMICS LETTERS, 2001, 72 (01) : 1 - 10
  • [10] Robustness Diagnosis for Bootstrap Inference
    Lok, W. S.
    Lee, Stephen M. S.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (02) : 448 - 460