K3 surfaces with algebraic period ratios have complex multiplication

被引:3
|
作者
Tretkoff, Paula [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Univ Lille 1, CNRS, UMR 8524, F-59655 Villeneuve Dascq, France
关键词
K3; surfaces; periods; complex multiplication; transcendence; AUTOMORPHIC-FUNCTIONS; TRANSCENDENCE PROPERTIES; ABELIAN VARIETIES; CONJECTURE; INTEGRALS; FAMILIES;
D O I
10.1142/S1793042115400217
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a non-zero holomorphic 2-form on a K3 surface S. Suppose that S is projective algebraic and is defined over (Q) over bar. Let P be the (Q) over bar -vector space generated by the numbers given by all the periods integral(gamma) Omega, gamma is an element of H-2 (S, Z). We show that, if dim((Q) over bar) P = 1, then S has complex multiplication, meaning that the Mumford-Tate group of the rational Hodge structure on H-2(S, Q) is abelian. This result was announced in [P. Tretkoff, Transcendence and CM on Borcea-Voisin towers of Calabi-Yau manifolds, J. Number Theory 152 (2015) 118-155], without a detailed proof. The converse is already well known.
引用
下载
收藏
页码:1709 / 1724
页数:16
相关论文
共 50 条
  • [31] A Family of K3 Surfaces and Towers of Algebraic Curves over Finite Fields
    S. Galkin
    S. Rybakov
    Mathematical Notes, 2019, 106 : 1014 - 1018
  • [32] A Family of K3 Surfaces and Towers of Algebraic Curves over Finite Fields
    Galkin, S.
    Rybakov, S.
    MATHEMATICAL NOTES, 2019, 106 (5-6) : 1014 - 1018
  • [33] SURJECTIVITY OF PERIOD MAP OF K3 SURFACES OF DEGREE-2
    HORIKAWA, E
    MATHEMATISCHE ANNALEN, 1977, 228 (02) : 113 - 146
  • [34] An isoceny of K3 surfaces
    Van Geemen, B
    Top, J
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 : 209 - 223
  • [35] DEGENERATION OF K3 SURFACES
    NISHIGUCHI, K
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1988, 28 (02): : 267 - 300
  • [36] Families of K3 surfaces
    Borcherds, RE
    Katzarkov, L
    Pantev, T
    Shepherd-Barron, NI
    JOURNAL OF ALGEBRAIC GEOMETRY, 1998, 7 (01) : 183 - 193
  • [37] Noncommutative K3 surfaces
    Kim, H
    Lee, CY
    PHYSICS LETTERS B, 2002, 536 (1-2) : 154 - 160
  • [38] On elliptic K3 surfaces
    Shimada, I
    MICHIGAN MATHEMATICAL JOURNAL, 2000, 47 (03) : 423 - 446
  • [39] SUPERSINGULAR K3 SURFACES
    ARTIN, M
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1974, 7 (04): : 543 - 567
  • [40] ON CURVES ON K3 SURFACES
    MARTENS, G
    LECTURE NOTES IN MATHEMATICS, 1989, 1389 : 174 - 182