Multidimensional decay in the van der Corput lemma

被引:14
|
作者
Ruzhansky, Michael [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
van der Corput lemma; stationary phase; sublevel set estimates; HYPERBOLIC-EQUATIONS; SET; SYSTEMS;
D O I
10.4064/sm208-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a multidimensional decay of oscillatory integrals with degenerate stationary points, gaining the decay with respect to all space variables. This bridges the gap between the one-dimensional decay for degenerate stationary points given by the classical van der Corput lemma and the multidimensional decay for non-degenerate stationary points given by the stationary phase method. Complex-valued phase functions as well as phases and amplitudes of limited regularity are considered. Conditions for estimates to be uniform in parameter are also given.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [21] MULTIDIMENSIONAL VAN DER CORPUT-TYPE ESTIMATES INVOLVING MITTAG-LEFFLER FUNCTIONS
    Ruzhansky, Michael
    Torebek, Berikbol T.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (06) : 1663 - 1677
  • [22] CYCLIC SHIFTS OF THE VAN DER CORPUT SET
    Bilyk, Dmitriy
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (08) : 2591 - 2600
  • [23] Van der Corput method and optical illusions
    Chamizo, Fernando
    Raboso, Dulcinea
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2015, 26 (05): : 723 - 735
  • [24] Multidimensional van der Corput-Type Estimates Involving Mittag-Leffler Functions
    Michael Ruzhansky
    Berikbol T. Torebek
    Fractional Calculus and Applied Analysis, 2020, 23 : 1663 - 1677
  • [25] Multidimensional Sensitivity Analysis of an Air Pollution Model Based on Modifications of the van der Corput Sequence
    Todorov, Venelin
    Dimov, Ivan
    Georgieva, Rayna
    Ostromsky, Tzvetan
    Zlatev, Zahari
    Poryazov, Stoyan
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 180 - 187
  • [26] A generalization of van der Corput's inequality
    Qi, Feng
    Cao, Jian
    Niu, Da-Wei
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (02) : 770 - 777
  • [27] Ergodic characterization of van der Corput sets
    Nincevic, Marina
    Rabar, Braslav
    Slijepcevic, Sinisa
    ARCHIV DER MATHEMATIK, 2012, 98 (04) : 355 - 360
  • [28] Determination of a van der Corput absolute constant
    Kershner, R
    AMERICAN JOURNAL OF MATHEMATICS, 1938, 60 : 549 - 554
  • [29] A dynamical proof of the van der Corput inequality
    Edeko, Nikolai
    Kreidler, Henrik
    Nagel, Rainer
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2022, 37 (04): : 648 - 665
  • [30] Van der Corput inequalities for Bessel functions
    Baricz, Arpad
    Laforgia, Andrea
    Pogany, Tibor K.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (01) : 78 - 87