Multi-wall carbon nanotubes as support of copper-cerium composite for preferential oxidation of carbon monoxide

被引:33
|
作者
Zeng, Shanghong [1 ]
Zhang, Lu [1 ]
Jiang, Nan [1 ]
Gao, Meiyi [1 ]
Zhao, Xiaozhou [1 ]
Yin, Yueling [1 ]
Su, Haiquan [1 ]
机构
[1] Inner Mongolia Univ, Sch Chem & Chem Engn, Inner Mongolia Key Lab Chem & Phys Rare Earth Mat, Hohhot 010021, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-wall carbon nanotubes; Copper cerium composite; Hydrogen; Preferential oxidation of carbon monoxide; CATALYTIC-ACTIVITY; CUO-CEO2; CATALYSTS; CO OXIDATION; CUO/CEO2; NANOPARTICLES; PERFORMANCE; CEO2/CUO; NITROGEN; GROWTH; OXIDES;
D O I
10.1016/j.jpowsour.2015.04.115
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The CuxO/MWCNTs, CeO2/MWCNTs and CuxO-CeO2/MWCNTs catalysts were synthesized by a simple impregnation method, and characterized via X-ray diffraction, N-2 adsorption-desorption, Fourier transformed infrared spectroscopy, transmission electron microscopy, H-2 temperature-programmed reduction and X-ray photoelectron spectra. The catalytic performance for preferential CO oxidation was carried out in the hydrogen-rich gasses. It is found that the hydrophilic functional groups of hydroxyl and carboxyl in the samples are favorable for the incorporation of CuxO and CeO2 into the tubes of the MWCNTs. Most of CuxO particles and CeO2 nanowires are filled in the tubes of MWCNTs, and a small amount of nanoparticles are deposited on the surface of MWCNTs. The MWCNTs have high BET surface area, which is helpful for the dispersion of CuxO and CeO2 to expose more active surface for CO-PROX reaction over the CuxO-CeO2/MWCNTs catalysts. The CuxO-CeO2/MWCNTs-C catalyst shows good catalytic activity and the temperature window of CO total conversion is from 135 degrees C to 175 degrees C. MWCNTs with high BET surface area weaken poisoning effect of H2O and CO2 after 135 degrees C. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1016 / 1023
页数:8
相关论文
共 50 条
  • [41] Thermal annealing effect in multi-wall carbon nanotubes
    Ochiai, Y
    Enomoto, R
    Ishii, S
    Miyamoto, K
    Matsunaga, Y
    Aoki, N
    PHYSICA B-CONDENSED MATTER, 2002, 323 (1-4) : 256 - 258
  • [42] Synthesis of multi-wall carbon nanotubes by simple pyrolysis
    Mahanundia, P.
    Vishwakarma, P. N.
    Nanda, K. K.
    Prasad, V.
    Barai, K.
    Mondal, A. K.
    Sarangi, S.
    Dey, G. K.
    Subramanyam, S. V.
    SOLID STATE COMMUNICATIONS, 2008, 145 (03) : 143 - 148
  • [43] Toxicological effects of multi-wall carbon nanotubes in rats
    Aihong Liu
    Kangning Sun
    Jiafeng Yang
    Dongmei Zhao
    Journal of Nanoparticle Research, 2008, 10 : 1303 - 1307
  • [44] Electric and magnetic response of multi-wall carbon nanotubes
    Yamamoto, Masashi
    Koshino, Mikito
    Ando, Tsuneya
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (08)
  • [45] Studies on the adsorption of amoxicillin on multi-wall carbon nanotubes
    Balarak, Davoud
    Mostafapour, FerdosKord
    Bazrafshan, Edris
    Saleh, Tawfik A.
    WATER SCIENCE AND TECHNOLOGY, 2017, 75 (07) : 1599 - 1606
  • [46] Field emission properties of multi-wall carbon nanotubes
    Feng, Zhe-Chuan
    Huang, Yi-Zhe
    Ting, Jyh-Hua
    Chen, Li-Chyong
    Lu, Weijie
    CARBON NANOTUBES AND ASSOCIATED DEVICES, 2008, 7037
  • [47] Studies on Adsorption of Tyrosine on Multi-wall Carbon Nanotubes
    Feng Zhibiao
    Han Renjiao
    Wang Jinglong
    MATERIALS SCIENCE AND ENGINEERING, PTS 1-2, 2011, 179-180 : 1396 - 1401
  • [48] Study on polymer sheathing on multi-wall carbon nanotubes
    Li Hongsheng
    Feng Qingping
    Gao Yanfang
    Xie Xuming
    ACTA POLYMERICA SINICA, 2006, (04) : 588 - 592
  • [49] Magnetoresistance and spin diffusion in multi-wall carbon nanotubes
    Langford, R. M.
    Thornton, M. J.
    Wang, T. X.
    Blau, W.
    Lassagne, B.
    Raquet, B.
    MICROELECTRONIC ENGINEERING, 2007, 84 (5-8) : 1593 - 1595
  • [50] Functionalized Multi-Wall Carbon Nanotubes for Lipase Immobilization
    Pavlidis, I. V.
    Tsoufis, T.
    Enotiadis, A.
    Gournis, D.
    Stamatis, H.
    ADVANCED ENGINEERING MATERIALS, 2010, 12 (05) : B179 - B183