Fractal properties of the generalized Chaikin corner-cutting subdivision scheme

被引:10
|
作者
Wang, Juan [1 ]
Zheng, Hongchan [1 ]
Xu, Feng [1 ]
Liu, Dekong [1 ]
机构
[1] NW Polytech Univ, Dept Appl Math, Xian 710129, Peoples R China
基金
中国国家自然科学基金;
关键词
Subdivision scheme; Generalized Chaikin corner-cutting scheme; Limit points; Fractal properties;
D O I
10.1016/j.camwa.2010.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the fractal properties of the generalized Chaikin corner-cutting subdivision scheme with two arbitrary parameters. On the basis of the discussion of limit points on the limit curve, the fractal range of the scheme is obtained and illustrated. The results obtained suggest a clear direction for generating fractal curves by using this scheme. Two fractal examples and their complexity evaluation results obtained by using the box dimension are given. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2197 / 2200
页数:4
相关论文
共 50 条
  • [41] Generalized Scheme For Fractal Based Digital Signature (GFDS)
    Alia, Mohammad Ahmad
    Bin Samsudin, Azman
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2007, 7 (07): : 99 - 104
  • [42] Direct dynamics calculation of the kinetic isotope effect for an organic hydrogen-transfer reaction, including corner-cutting tunneling in 21 dimensions
    Liu, Y.-P.
    Lu, D.
    Gonzalez-Lafont, A.
    Truhlar, D.G.
    Garrett, B.C.
    Journal of the American Chemical Society, 1993, 115 (17): : 7806 - 7817
  • [43] Fermat's spiral smooth planar path planning under origin-departing and corner-cutting transitions for autonomous marine vehicles
    Zhang, Jialei
    Xiang, Xianbo
    Li, Weijia
    Yang, Shaolong
    Zhang, Qin
    OCEAN ENGINEERING, 2020, 215 (215)
  • [44] DIRECT DYNAMICS CALCULATION OF THE KINETIC ISOTOPE EFFECT FOR AN ORGANIC HYDROGEN-TRANSFER REACTION, INCLUDING CORNER-CUTTING TUNNELING IN 21 DIMENSIONS
    LIU, YP
    LU, DH
    GONZALEZLAFONT, A
    TRUHLAR, DG
    GARRETT, BC
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (17) : 7806 - 7817
  • [45] Fractal behavior of ternary 4-point interpolatory subdivision scheme with tension parameter
    Siddiqi, Shahid S.
    Salam, Wardat Us
    Butt, Nadeem Ahmad
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 260 : 148 - 158
  • [46] Fractal properties of generalized Sierpinski triangles
    Falconer, KJ
    Lammering, B
    FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1998, 6 (01): : 31 - 41
  • [47] Fractal range of a 3-point ternary interpolatory subdivision scheme with two parameters
    Zheng, Hongchan
    Ye, Zhenglin
    Chen, Zuoping
    Zhao, Hongxing
    CHAOS SOLITONS & FRACTALS, 2007, 32 (05) : 1838 - 1845
  • [48] A Reverse Non-Stationary Generalized B-Splines Subdivision Scheme
    Lamnii, Abdellah
    Nour, Mohamed Yassir
    Zidna, Ahmed
    MATHEMATICS, 2021, 9 (20)
  • [49] Generation of fractal curves and surfaces using ternary 4-point interpolatory subdivision scheme
    Siddiqi, Shahid S.
    Idrees, Usama
    Rehan, Kashif
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 246 : 210 - 220
  • [50] Generation of fractal curves using new binary 8-point interpolatory subdivision scheme
    Ghaffar, Abdul
    Javed, Sadia
    Mustafa, Ghulam
    Akgul, Ali
    Hassani, Murad Khan
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2024, 32 (01):