Deep Learning Prediction of Gait Based on Inertial Measurements

被引:2
|
作者
Romero-Hernandez, Pedro [1 ]
de Lope Asiain, Javier [1 ]
Grana, Manuel [2 ]
机构
[1] Madrid Polytech Univ, Artificial Intelligence Dept, Madrid, Spain
[2] Univ Basque Country, Comp Sci Dept, San Sebastian, Spain
关键词
HUMAN ACTIVITY RECOGNITION; ACCELEROMETER DATA; PHYSICAL-ACTIVITY; ALGORITHM;
D O I
10.1007/978-3-030-19591-5_29
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We report the application of recurrent deep learning networks, namely long term short memories (LSTM) for the modeling of gait synchronization of legs using a basic configuration of off-the-shelf inertial measurement units (IMU) providing six acceleration and rotation parameters. The proposed system copes with noisy and missing data due to high sampling rate, before applying the training of LSTM. We report accurate testing results on one experimental subject. This model can be transferred to robotised prostheses and assistive robotics devices in order to achieve quick stabilization and robust transfer of control algorithms to new users.
引用
收藏
页码:284 / 290
页数:7
相关论文
共 50 条
  • [21] Deep Inertial Poser: Learning to Reconstruct Human Pose from Sparse Inertial Measurements in Real Time
    Huang, Yinghao
    Kaufmann, Manuel
    Aksan, Emre
    Black, Michael J.
    Hilliges, Otmar
    Pons-Moll, Gerard
    ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (06):
  • [22] Gait Activity Classification on Unbalanced Data from Inertial Sensors Using Shallow and Deep Learning
    Hussein Lopez-Nava, Irvin
    Valentin-Coronado, Luis M.
    Garcia-Constantino, Matias
    Favela, Jesus
    SENSORS, 2020, 20 (17) : 1 - 21
  • [23] Deep-learning-based pipeline for module power prediction from electroluminescense measurements
    Hoffmann, Mathis
    Buerhop-Lutz, Claudia
    Reeb, Luca
    Pickel, Tobias
    Winkler, Thilo
    Doll, Bernd
    Wuerfl, Tobias
    Peters, Ian Marius
    Brabec, Christoph
    Maier, Andreas
    Christlein, Vincent
    PROGRESS IN PHOTOVOLTAICS, 2021, 29 (08): : 920 - 935
  • [24] SMARTphone inertial sensors based STEP detection driven by human gait learning
    Al Abiad, Nahime
    Kone, Yacouba
    Renaudin, Valerie
    Robert, Thomas
    INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN 2021), 2021,
  • [25] Clinical Gait Assessment Comparison: Smartphone-based versus Inertial Measurements Units
    Zaleski, Olivia
    Navarro, Miguel
    Diaz, Steven
    Redondo, Jose M.
    Labrador, Miguel A.
    IEEE SOUTHEASTCON 2018, 2018,
  • [26] Improved Window Segmentation for Deep Learning Based Inertial Odometry
    Chen, Siyu
    Zhu, Yu
    Niu, Xiaoguang
    Hu, Zhiyong
    2020 IEEE 39TH INTERNATIONAL PERFORMANCE COMPUTING AND COMMUNICATIONS CONFERENCE (IPCCC), 2020,
  • [27] Human gait analysis for osteoarthritis prediction: a framework of deep learning and kernel extreme learning machine
    Khan, Muhammad Attique
    Kadry, Seifedine
    Parwekar, Pritee
    Damasevicius, Robertas
    Mehmood, Asif
    Khan, Junaid Ali
    Naqvi, Syed Rameez
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (03) : 2665 - 2683
  • [28] Human gait analysis for osteoarthritis prediction: a framework of deep learning and kernel extreme learning machine
    Muhammad Attique Khan
    Seifedine Kadry
    Pritee Parwekar
    Robertas Damaševičius
    Asif Mehmood
    Junaid Ali Khan
    Syed Rameez Naqvi
    Complex & Intelligent Systems, 2023, 9 : 2665 - 2683
  • [29] Deep learning gait recognition based on two branch spatiotemporal gait feature fusion
    Zhang Y.-Z.
    Dong X.
    Zhang, Yun-Zuo (zhangyunzuo888@sina.com), 1600, Northeast University (39): : 1403 - 1408
  • [30] Freezing of gait assessment with inertial measurement units and deep learning: effect of tasks, medication states, and stops
    Po-Kai Yang
    Benjamin Filtjens
    Pieter Ginis
    Maaike Goris
    Alice Nieuwboer
    Moran Gilat
    Peter Slaets
    Bart Vanrumste
    Journal of NeuroEngineering and Rehabilitation, 21