Deep Learning Prediction of Gait Based on Inertial Measurements

被引:2
|
作者
Romero-Hernandez, Pedro [1 ]
de Lope Asiain, Javier [1 ]
Grana, Manuel [2 ]
机构
[1] Madrid Polytech Univ, Artificial Intelligence Dept, Madrid, Spain
[2] Univ Basque Country, Comp Sci Dept, San Sebastian, Spain
关键词
HUMAN ACTIVITY RECOGNITION; ACCELEROMETER DATA; PHYSICAL-ACTIVITY; ALGORITHM;
D O I
10.1007/978-3-030-19591-5_29
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We report the application of recurrent deep learning networks, namely long term short memories (LSTM) for the modeling of gait synchronization of legs using a basic configuration of off-the-shelf inertial measurement units (IMU) providing six acceleration and rotation parameters. The proposed system copes with noisy and missing data due to high sampling rate, before applying the training of LSTM. We report accurate testing results on one experimental subject. This model can be transferred to robotised prostheses and assistive robotics devices in order to achieve quick stabilization and robust transfer of control algorithms to new users.
引用
收藏
页码:284 / 290
页数:7
相关论文
共 50 条
  • [1] Uncertainty based active learning with deep neural networks for inertial gait analysis
    Vaith, Alexander
    Taetz, Bertram
    Bleser, Gabriele
    PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), 2020, : 1058 - 1065
  • [2] Gait-based person fall prediction using deep learning approach
    Murthy, Achanta Sampath Dakshina
    Karthikeyan, Thangavel
    Kanna, R. Vinoth
    SOFT COMPUTING, 2022, 26 (23) : 12933 - 12941
  • [3] Gait-based person fall prediction using deep learning approach
    Achanta Sampath Dakshina Murthy
    Thangavel Karthikeyan
    R. Vinoth Kanna
    Soft Computing, 2022, 26 : 12933 - 12941
  • [4] Estimation of Joint Angle From sEMG and Inertial Measurements Based on Deep Learning Approach
    Lobaina Delgado, Alfredo
    Da Rocha, Adson F.
    Suarez Leon, Alexander
    Ruiz-Olaya, Andres
    Montero, Klaus Ribeiro
    Lopez Delis, Alberto
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 700 - 703
  • [5] Novel Deep Learning Network for Gait Recognition Using Multimodal Inertial Sensors
    Shi, Ling-Feng
    Liu, Zhong-Ye
    Zhou, Ke-Jun
    Shi, Yifan
    Jing, Xiao
    SENSORS, 2023, 23 (02)
  • [6] Attention-Based Deep Learning Framework for Hemiplegic Gait Prediction With Smartphone Sensors
    Thakur, Dipanwita
    Biswas, Suparna
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 11979 - 11988
  • [7] DoorINet: Door Heading Prediction Through Inertial Deep Learning
    Zakharchenko, Aleksei
    Farber, Sharon
    Klein, Itzik
    IEEE Sensors Journal, 2024, 24 (19) : 31456 - 31465
  • [8] Gait Trajectory Prediction on an Embedded Microcontroller Using Deep Learning
    Karakish, Mohamed
    Fouz, Moustafa A.
    ELsawaf, Ahmed
    SENSORS, 2022, 22 (21)
  • [9] Gait Recognition Based on Deep Learning: A Survey
    Goncalves Dos Santos, Claudio Filipi
    Oliveira, Diego De Souza
    Passos, Leandro A.
    Pires, Rafael Goncalves
    Silva Santos, Daniel Felipe
    Valem, Lucas Pascotti
    Moreira, Thierry P.
    Santana, Marcos Cleison S.
    Roder, Mateus
    Papa, Joao Paulo
    Colombo, Danilo
    ACM COMPUTING SURVEYS, 2023, 55 (02)
  • [10] Episode-level prediction of freezing of gait based on wearable inertial signals using a deep neural network model
    Huang, Debin
    Wu, Chan
    Wang, Yiwen
    Zhang, Zheyuan
    Chen, Cheng
    Li, Li
    Zhang, Wei
    Zhang, Zixuan
    Li, Jinyu
    Guo, Yuzhu
    Cui, Guiyun
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88