[DEMO] Dense Planar SLAM

被引:0
|
作者
Salas-Moreno, Renato F. [1 ]
Glocker, Ben [1 ]
Kelly, Paul H. J. [1 ]
Davison, Andrew J. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England
关键词
Computing methodologies [Scene understanding; Computing methodologies [Reconstruction]; Computing methodologies [Image Processing and Computer Vision]: Segmentation; Information Systems [Information Interfaces and Presentation]: Artificial; augmented; and virtual realities;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Using higher-level entities during mapping has the potential to improve camera localisation performance and give substantial perception capabilities to real-time 3D SLAM systems. We present an efficient new real-time approach which densely maps an environment using bounded planes and surfels extracted from depth images (like those produced by RGB-D sensors or dense multi-view stereo reconstruction). Our method offers the every-pixel descriptive power of the latest dense SLAM approaches, but takes advantage directly of the planarity of many parts of real-world scenes via a data-driven process to directly regularize planar regions and represent their accurate extent efficiently using an occupancy approach with on-line compression. Large areas can be mapped efficiently and with useful semantic planar structure which enables intuitive and useful AR applications such as using any wall or other planar surface in a scene to display a user's content.
引用
收藏
页码:367 / 368
页数:2
相关论文
共 50 条
  • [21] ElasticFusion: Dense SLAM Without A Pose Graph
    Whelan, Thomas
    Leutenegger, Stefan
    Salas-Moreno, Renato E.
    Ben Glocker
    Davison, Andrew J.
    ROBOTICS: SCIENCE AND SYSTEMS XI, 2015,
  • [22] FPGA Architectures for Approximate Dense SLAM Computing
    Gkeka, Maria Rafaela
    Patras, Alexandros
    Antonopoulos, Christos D.
    Lalis, Spyros
    Bellas, Nikolaos
    PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 828 - 833
  • [23] Dense Visual SLAM with Probabilistic Surfel Map
    Yan, Zhixin
    Ye, Mao
    Ren, Liu
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (11) : 2389 - 2398
  • [24] Dense mapping from an accurate tracking SLAM
    Huang, Weijie
    Zhang, Guoshan
    Han, Xiaowei
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2020, 7 (06) : 1565 - 1574
  • [25] Semi-Dense SLAM on an FPGA SoC
    Boikos, Konstantinos
    Bouganis, Christos-Savvas
    2016 26TH INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2016,
  • [26] Dense Mapping From an Accurate Tracking SLAM
    Weijie Huang
    Guoshan Zhang
    Xiaowei Han
    IEEE/CAA Journal of Automatica Sinica, 2020, 7 (06) : 1565 - 1574
  • [27] Large Scale Dense Visual Inertial SLAM
    Ma, Lu
    Falquez, Juan M.
    McGuire, Steve
    Sibley, Gabe
    FIELD AND SERVICE ROBOTICS: RESULTS OF THE 10TH INTERNATIONAL CONFERENCE, 2016, 113 : 141 - 155
  • [28] Probabilistic Volumetric Fusion for Dense Monocular SLAM
    Rosinol, Antoni
    Leonard, John J.
    Carlone, Luca
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 3096 - 3104
  • [29] A Dense Visual SLAM Method in Dynamic Scenes
    Liu, Xia
    Zhang, Jiachen
    Wang, Bo
    Jiang, Qifeng
    IEEE ACCESS, 2023, 11 : 138530 - 138539
  • [30] VPS-SLAM: Visual Planar Semantic SLAM for Aerial Robotic Systems
    Bavle, Hriday
    De La Puente, Paloma
    How, Jonathan P.
    Campoy, Pascual
    IEEE ACCESS, 2020, 8 : 60704 - 60718