Copper impair autophagy on zebrafish (Danio rerio) gill epithelium

被引:14
|
作者
Luzio, A. [1 ,2 ,3 ]
Parra, S. [1 ,2 ,3 ]
Costa, B. [3 ]
Santos, D. [1 ,2 ,3 ]
Alvaro, A. R. [4 ]
Monteiro, S. M. [1 ,2 ,3 ]
机构
[1] CITAB, Ctr Res & Technol Agroenvironm & Biol Sci, Vila Real, Portugal
[2] Inov4Agro Inst Innovat Capac Bldg & Sustainabil A, Vila Real, Portugal
[3] Univ Tras Os Montes & Alto Douro, Life Sci & Environm Sch, Dept Biol & Environm, Apt 1013, P-5000801 Vila Real, Portugal
[4] Univ Coimbra CNBC UC, Ctr Neurosci & Cell Biol, P-3004504 Coimbra, Portugal
关键词
Ultrastructure; Autophagosome; LC3; Apoptosis; Cell death; FRESH-WATER; HISTOPATHOLOGICAL ALTERATIONS; OXIDATIVE-STRESS; NILE TILAPIA; LATES-CALCARIFER; GENE-EXPRESSION; CHLORIDE CELLS; FISH GILLS; SEA-BASS; APOPTOSIS;
D O I
10.1016/j.etap.2021.103674
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Copper (Cu) is an essential element for organism's metabolism, being controversially listed as a priority pollutant. Importantly, the toxicity of Cu has been linked to several cell death pathways. Thus, this study aimed to assess if macroautophagic pathways are triggered by Cu in zebrafish gill, the main target of waterborne pollutants. The electron microscopy findings indicated that Cu induced profound impacts on zebrafish gill structure and functions, being this tissue a biomarker sensitive enough to indicate early toxic effects. The findings also support a clear impairment of autophagy, througth the absence of phagossomes and the significant downregulation mRNA transcript levels of microtubule-associated protein light chain 3 (LC3). The reduction of LC3 levels was often associated to an increase of apoptotic activation, indicating that the inhibition of macroautophagy triggers apoptosis in zebrafish gills. This study highlighted that the autophagic down-regulation might be affected through the activation of other cell death signaling pathway.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Scale development in zebrafish (Danio rerio)
    Sire, JY
    Allizard, F
    Babiar, O
    Bourguignon, J
    Quilhac, A
    JOURNAL OF ANATOMY, 1997, 190 : 545 - 561
  • [32] Measurement of phosphoinositides in the zebrafish Danio rerio
    Jones, David R.
    Ramirez, Irene Barinaga-Rementeria
    Lowe, Martin
    Divecha, Nullin
    NATURE PROTOCOLS, 2013, 8 (06) : 1058 - 1072
  • [33] Bradykinin receptors in the zebrafish (Danio rerio)
    Bromée, T
    Conlon, JM
    Larhammar, D
    TRENDS IN COMPARATIVE ENDOCRINOLOGY AND NEUROBIOLOGY, 2005, 1040 : 246 - 248
  • [34] Production of androgenetic zebrafish (Danio rerio)
    CorleySmith, GE
    Lim, CTJ
    Brandhorst, BP
    GENETICS, 1996, 142 (04) : 1265 - 1276
  • [35] Tooth succession in the zebrafish (Danio rerio)
    Van der heyden, C
    Wautier, K
    Huysseune, A
    ARCHIVES OF ORAL BIOLOGY, 2001, 46 (11) : 1051 - 1058
  • [36] Chasing engrams in zebrafish (Danio rerio)
    Garg, Pranjal
    Sengupta, Sumedha
    JOURNAL OF NEUROSCIENCE RESEARCH, 2022, 100 (09) : 1645 - 1648
  • [37] Latent learning in zebrafish (Danio rerio)
    Gomez-Laplaza, Luis M.
    Gerlai, Robert
    BEHAVIOURAL BRAIN RESEARCH, 2010, 208 (02) : 509 - 515
  • [38] Sex recognition in zebrafish (Danio rerio)
    Sophie Hutter
    Sarah M. Zala
    Dustin J. Penn
    Journal of Ethology, 2011, 29 : 55 - 61
  • [39] Acridine mutagenesis of zebrafish (Danio rerio)
    Hampson, R
    Hughes, SM
    MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2003, 525 (1-2) : 1 - 9
  • [40] Liver development in zebrafish (Danio rerio)
    Ting Tao
    遗传学报, 2009, 36 (06) : 325 - 334