Investigation of Uncertainty of Deep Learning-based Object Classification on Radar Spectra

被引:3
|
作者
Patel, Kanil [1 ,2 ]
Beluch, William [1 ]
Rambach, Kilian [1 ]
Cozma, Adriana-Eliza [1 ]
Pfeiffer, Michael [1 ]
Yang, Bin [2 ]
机构
[1] Bosch Ctr Artificial Intelligence, Renningen, Germany
[2] Univ Stuttgart, Inst Signal Proc & Syst Theory, Stuttgart, Germany
关键词
NETWORKS;
D O I
10.1109/RadarConf2147009.2021.9455269
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning (DL) has recently attracted increasing interest to improve object type classification for automotive radar. In addition to high accuracy, it is crucial for decision making in autonomous vehicles to evaluate the reliability of the predictions; however, decisions of DL networks are non-transparent. Current DL research has investigated how uncertainties of predictions can be quantified, and in this article, we evaluate the potential of these methods for safe, automotive radar perception. In particular we evaluate how uncertainty quantification can support radar perception under (1) domain shift, (2) corruptions of input signals, and (3) in the presence of unknown objects. We find that in agreement with phenomena observed in the literature, deep radar classifiers are overly confident, even in their wrong predictions. This raises concerns about the use of the confidence values for decision making under uncertainty, as the model fails to notify when it cannot handle an unknown situation. Accurate confidence values would allow optimal integration of multiple information sources, e.g. via sensor fusion. We show that by applying state-of-the-art post-hoc uncertainty calibration, the quality of confidence measures can be significantly improved, thereby partially resolving the over-confidence problem. Our investigation shows that further research into training and calibrating DL networks is necessary and offers great potential for safe automotive object classification with radar sensors.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Deep Learning-Based Classification of Hyperspectral Data
    Chen, Yushi
    Lin, Zhouhan
    Zhao, Xing
    Wang, Gang
    Gu, Yanfeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2094 - 2107
  • [32] Deep Learning-Based Classification of Diabetic Retinopathy
    Huang, Zhenjia
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 371 - 375
  • [33] Deep Learning-Based Water Crystal Classification
    Thi, Hien Doan
    Andres, Frederic
    Quoc, Long Tran
    Emoto, Hiro
    Hayashi, Michiko
    Katsumata, Ken
    Oshide, Takayuki
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [34] Deep Learning-based Estimation for Multitarget Radar Detection
    Delamou, Mamady
    Bazzi, Ahmad
    Chafii, Marwa
    Amhoud, El Mehdi
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [35] Deep learning-based classification and segmentation for scalpels
    Baiquan Su
    Qingqian Zhang
    Yi Gong
    Wei Xiu
    Yang Gao
    Lixin Xu
    Han Li
    Zehao Wang
    Shi Yu
    Yida David Hu
    Wei Yao
    Junchen Wang
    Changsheng Li
    Jie Tang
    Li Gao
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 855 - 864
  • [36] A Deep Learning-based Approach for WBC Classification
    Ramyashree, K. S.
    Sharada, B.
    Bhairava, R.
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [37] A Deep Learning-Based Methodology for Precipitation Nowcasting With Radar
    Chen, Lei
    Cao, Yuan
    Ma, Leiming
    Zhang, Junping
    EARTH AND SPACE SCIENCE, 2020, 7 (02)
  • [38] Potential of Radar for Static Object Classification using Deep Learning Methods
    Lombacher, Jakob
    Hahn, Markus
    Dickmann, Juergen
    Woehler, Christian
    2016 IEEE MTT-S INTERNATIONAL CONFERENCE ON MICROWAVES FOR INTELLIGENT MOBILITY (ICMIM), 2016,
  • [39] On Deep Learning-Based Indoor Positioning and Uncertainty Estimation
    Chen, Szu-Wei
    Chiang, Ting-Hui
    Tseng, Yu-Chee
    Chen, Yan-Ann
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 207 - 212
  • [40] Deep learning-based small object detection: A survey
    Feng, Qihan
    Xu, Xinzheng
    Wang, Zhixiao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (04) : 6551 - 6590