Evolution of Microstructure and its Parameters after Deformation of Polycrystalline Cu-Al Alloys with Different Stacking Fault Energy

被引:0
|
作者
Koneva, N. A. [1 ]
Trishkina, L., I [1 ]
Cherkasova, T., V [1 ,2 ]
Solov'ev, A. N. [1 ]
Cherkasov, N., V [1 ]
机构
[1] Tomsk State Univ Architecture & Bldg, Tomsk, Russia
[2] Natl Res Tomsk State Univ, Tomsk, Russia
关键词
metals; alloys; strain; grain size; bending and torsion; crystal lattice; stacking fault energy; structural defects;
D O I
10.1007/s11182-021-02447-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Transmission electron microscopy (TEM) is used to investigate the evolution of the dislocation substructure after active plastic deformation of copper-aluminum alloys with the aluminum content varying between 0.5-14 at.%. Using TEM images, the types of the dislocation substructure are determined depending on the alloying element concentration and the strain intensity. The parameters of the defect structure, such as average scalar dislocation density, bending and torsion of the crystal lattice, and microtwin density are measured. It is found that the stacking fault energy exerts an effect on the defect accumulation.
引用
收藏
页码:1219 / 1224
页数:6
相关论文
共 50 条
  • [31] Effects of stacking fault energy on the thermal stability and mechanical properties of nanostructured Cu-Al alloys during thermal annealing
    An, X. H.
    Qu, S.
    Wu, S. D.
    Zhang, Z. F.
    [J]. JOURNAL OF MATERIALS RESEARCH, 2011, 26 (03) : 407 - 415
  • [32] AN X-RAY-DIFFRACTION STUDY OF THE EFFECT OF STACKING-FAULT ENERGY ON THE WEAR BEHAVIOR OF CU-AL ALLOYS
    WERT, JJ
    SINGERMAN, SA
    CALDWELL, SG
    CHAUDHURI, DK
    [J]. WEAR, 1983, 92 (02) : 213 - 229
  • [33] ON INFLUENCE OF STACKING FAULT ENERGY ON HIGH TEMPERATURE CREEP OF CU-AL SOLID SOLUTIONS
    PAHUTOVA, M
    HOSTINSKY, T
    CADEK, J
    [J]. SCRIPTA METALLURGICA, 1969, 3 (05): : 293 - +
  • [34] The Role of Stacking Fault Energy of Cu–Al and Cu–Mn Alloys During Their Deformation in Low-Stability States
    A. I. Potekaev
    L. I. Trishkina
    A. A. Klopotov
    T. V. Cherkasova
    Yu. A. Abzaev
    V. D. Klopotov
    V. I. Borodin
    A. V. Lun-Fu
    [J]. Russian Physics Journal, 2022, 65 : 1012 - 1021
  • [35] Effects of stacking fault energy on the deformation mechanisms and mechanical properties of Cu and Cu alloys processed by rolling at different temperatures
    Cai, Baozhuang
    Ren, Shiying
    Zhou, Shitong
    Li, Peng
    Lv, Weiwei
    Tao, Jingmei
    Zhu, Xinkun
    [J]. INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2015, 22 (04) : 399 - 406
  • [36] Effect of stacking fault energy on the split length of 9R phase in coarse-grained Cu-Al alloys
    Gu, Ji
    Tang, Yahui
    Ni, Song
    Song, Min
    [J]. MATERIALS CHARACTERIZATION, 2018, 142 : 9 - 14
  • [37] Role of stacking fault energy and strain rate in strengthening of Cu and Cu–Al alloys
    Baozhuang Cai
    Yan Long
    Cuie Wen
    Yulan Gong
    Caiju Li
    Jingmei Tao
    Xinkun Zhu
    [J]. Journal of Materials Research, 2014, 29 : 1747 - 1754
  • [38] Influence of Stacking Fault Energy on the Microstructures and Grain Refinement in the Cu-Al Alloys during Equal-Channel Angular Pressing
    An, X. H.
    Wu, S. D.
    Zhang, Z. F.
    [J]. NANOMATERIALS BY SEVERE PLASTIC DEFORMATION: NANOSPD5, PTS 1 AND 2, 2011, 667-669 : 379 - 384
  • [39] REINTERPRETATION OF INFLUENCE OF STACKING FAULT ENERGY ON HIGH TEMPERATURE CREEP OF CU-AL SOLID SOLUTIONS
    BARRETT, CR
    SHERNY, OD
    [J]. SCRIPTA METALLURGICA, 1969, 3 (05): : 297 - &
  • [40] MECHANICAL TWINNING MECHANISMS IN CU-AL CRYSTALS WITH VERY LOW STACKING-FAULT ENERGY
    TRANCHANT, F
    VERGNOL, J
    DENANOT, MF
    GRILHE, J
    [J]. SCRIPTA METALLURGICA, 1987, 21 (03): : 269 - 272