Evolution of Microstructure and its Parameters after Deformation of Polycrystalline Cu-Al Alloys with Different Stacking Fault Energy

被引:0
|
作者
Koneva, N. A. [1 ]
Trishkina, L., I [1 ]
Cherkasova, T., V [1 ,2 ]
Solov'ev, A. N. [1 ]
Cherkasov, N., V [1 ]
机构
[1] Tomsk State Univ Architecture & Bldg, Tomsk, Russia
[2] Natl Res Tomsk State Univ, Tomsk, Russia
关键词
metals; alloys; strain; grain size; bending and torsion; crystal lattice; stacking fault energy; structural defects;
D O I
10.1007/s11182-021-02447-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Transmission electron microscopy (TEM) is used to investigate the evolution of the dislocation substructure after active plastic deformation of copper-aluminum alloys with the aluminum content varying between 0.5-14 at.%. Using TEM images, the types of the dislocation substructure are determined depending on the alloying element concentration and the strain intensity. The parameters of the defect structure, such as average scalar dislocation density, bending and torsion of the crystal lattice, and microtwin density are measured. It is found that the stacking fault energy exerts an effect on the defect accumulation.
引用
收藏
页码:1219 / 1224
页数:6
相关论文
共 50 条
  • [1] Evolution of Microstructure and its Parameters after Deformation of Polycrystalline Cu-Al Alloys with Different Stacking Fault Energy
    N. A. Koneva
    L. I. Trishkina
    T. V. Cherkasova
    A. N. Solov’ev
    N. V. Cherkasov
    [J]. Russian Physics Journal, 2021, 64 : 1219 - 1224
  • [2] Effect of stacking-fault energy on deformation twin thickness in Cu-Al alloys
    Zhang, Y.
    Tao, N. R.
    Lu, K.
    [J]. SCRIPTA MATERIALIA, 2009, 60 (04) : 211 - 213
  • [3] Influence of stacking fault energy on twin spacing of Cu and Cu-Al alloys
    Velasco, Leonardo
    Polyakov, Mikhail N.
    Hodge, Andrea M.
    [J]. SCRIPTA MATERIALIA, 2014, 83 : 33 - 36
  • [4] The Influence of Stacking Fault Energy on Compression Test of Cu and Cu-Al Alloys
    Yang Hao
    Wu Xiao-Xiang
    San Xing-Yuan
    Shen Li
    Zhu Xin-Kun
    [J]. IUMRS INTERNATIONAL CONFERENCE IN ASIA 2011, 2012, 36 : 307 - 315
  • [5] Mechanical behavior and deformation kinetics of gradient structured Cu-Al alloys with varying stacking fault energy
    Yin, Zhe
    Sun, Lele
    Yang, Jian
    Gong, Yulan
    Zhu, Xinkun
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 687 : 152 - 160
  • [6] Role of stacking fault energy and strain rate in strengthening of Cu and Cu-Al alloys
    Cai, Baozhuang
    Long, Yan
    Wen, Cuie
    Gong, Yulan
    Li, Caiju
    Tao, Jingmei
    Zhu, Xinkun
    [J]. JOURNAL OF MATERIALS RESEARCH, 2014, 29 (16) : 1747 - 1754
  • [7] Effects of stacking fault energy, strain rate and temperature on microstructure and strength of nano structured Cu-Al alloys subjected to plastic deformation
    Zhang, Y.
    Tao, N. R.
    Lu, K.
    [J]. ACTA MATERIALIA, 2011, 59 (15) : 6048 - 6058
  • [8] Ductility Sensitivity to Stacking Fault Energy and Grain Size in Cu-Al Alloys
    Tian, Yanzhong
    Shibata, Akinobu
    Zhang, Zhefeng
    Tsuji, Nobuhiro
    [J]. MATERIALS RESEARCH LETTERS, 2016, 4 (02): : 112 - 117
  • [9] Effect of the stacking fault energy on the mechanical properties of pure Cu and Cu-Al alloys subjected to severe plastic deformation
    Zaynullina, Liliya
    Alexandrov, Igor
    Wei, Wei
    [J]. INTERNATIONAL CONFERENCE ON MODERN TRENDS IN MANUFACTURING TECHNOLOGIES AND EQUIPMENT (ICMTMTE 2017), 2017, 129
  • [10] Significance of stacking fault energy on microstructural evolution in Cu and Cu-Al alloys processed by high-pressure torsion
    An, X. H.
    Lin, Q. Y.
    Wu, S. D.
    Zhang, Z. F.
    Figueiredo, R. B.
    Gao, N.
    Langdon, T. G.
    [J]. PHILOSOPHICAL MAGAZINE, 2011, 91 (25) : 3307 - 3326