LONGITUDINAL MULTI-SCALE MAPPING OF INFANT CORTICAL FOLDING USING SPHERICAL WAVELETS

被引:0
|
作者
Duan, Dingna [1 ,2 ,3 ]
Rekik, Islem [2 ,3 ,4 ]
Xia, Shunren [1 ]
Lin, Weili [2 ,3 ]
Gilmore, John H. [5 ]
Shen, Dinggang [2 ,3 ]
Li, Gang [2 ,3 ]
机构
[1] Zhejiang Univ, Minist Educ, Key Lab Biomed Engn, Hangzhou, Zhejiang, Peoples R China
[2] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, BRIC, Chapel Hill, NC 27599 USA
[4] Univ Dundee, Sch Sci & Engn, Comp, CVIP, Dundee, Scotland
[5] Univ N Carolina, Dept Psychiat, Chapel Hill, NC USA
关键词
cortical folding; infant; longitudinal development; spherical wavelets; curvature; GYRIFICATION; SURFACE;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The dynamic development of brain cognition and motor functions during infancy are highly associated with the rapid changes of the convoluted cortical folding. However, little is known about how the cortical folding, which can be characterized on different scales, develops in the first two postnatal years. In this paper, we propose a curvature-based multi-scale method using spherical wavelets to map the complicated longitudinal changes of cortical folding during infancy. Specifically, we first decompose the cortical curvature map, which encodes the cortical folding information, into multiple spatial-frequency scales, and then measure the scale-specific wavelet power at 6 different scales as quantitative indices of cortical folding degree. We apply this method on 219 longitudinal MR images from 73 healthy infants at 0, 1, and 2 years of age. We reveal that the changing patterns of cortical folding are both scale-specific and region-specific. Particularly, at coarser spatial-frequency levels, the majority of the primary folds flatten out, while at finer spatial-frequency levels, the majority of the minor folds become more convoluted. This study provides valuable insights into the longitudinal changes of infant cortical folding.
引用
收藏
页码:93 / 96
页数:4
相关论文
共 50 条
  • [31] GYRAL WINDOW MAPPING OF TYPICAL CORTICAL FOLDING USING MRI
    Dombroski, Brynn A.
    Switala, Andrew E.
    El-Baz, Ayman S.
    Casanova, Manuel F.
    TRANSLATIONAL NEUROSCIENCE, 2011, 2 (02) : 142 - 147
  • [32] ORGANIZATION OF SPATIAL DATABASES FOR MULTI-SCALE WEB MAPPING
    Krylov, Sergei
    Mosolov, Dmitriy
    8TH INTERNATIONAL CONFERENCE ON CARTOGRAPHY AND GIS, VOL. 2, 2022, : 143 - 147
  • [33] Multi-scale Web Mapping for Geoheritage Visualisation and Promotion
    S. Martin
    E. Reynard
    R. Pellitero Ondicol
    L. Ghiraldi
    Geoheritage, 2014, 6 : 141 - 148
  • [34] A Tone Mapping Algorithm Based on Multi-scale Decomposition
    Li, Weizhong
    Yi, Benshun
    Huang, Taiqi
    Yao, Weiqing
    Peng, Hong
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2016, 10 (04): : 1846 - 1863
  • [35] Multi-scale Web Mapping for Geoheritage Visualisation and Promotion
    Martin, S.
    Reynard, E.
    Ondicol, R. Pellitero
    Ghiraldi, L.
    GEOHERITAGE, 2014, 6 (02) : 141 - 148
  • [36] Cuttlefish: Color Mapping for Dynamic Multi-Scale Visualizations
    Waldin, N.
    Waldner, M.
    Le Muzic, M.
    Groeller, E.
    Goodsell, D. S.
    Autin, L.
    Olson, A. J.
    Viola, I.
    COMPUTER GRAPHICS FORUM, 2019, 38 (06) : 150 - 164
  • [37] A robust multi-scale approach to quantitative susceptibility mapping
    Acosta-Cabronero, Julio
    Milovic, Carlos
    Mattern, Hendrik
    Tejos, Cristian
    Speck, Oliver
    Callaghan, Martina F.
    NEUROIMAGE, 2018, 183 : 7 - 24
  • [38] Block-spectral mapping for multi-scale solution
    He, L.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 250 : 13 - 26
  • [39] Multi-scale digital soil mapping with deep learning
    Behrens, Thorsten
    Schmidt, Karsten
    MacMillan, Robert A.
    Rossel, Raphael A. Viscarra
    SCIENTIFIC REPORTS, 2018, 8
  • [40] Multi-scale digital soil mapping with deep learning
    Thorsten Behrens
    Karsten Schmidt
    Robert A. MacMillan
    Raphael A. Viscarra Rossel
    Scientific Reports, 8