Hausdorff content and the Hardy-Littlewood maximal operator on metric measure spaces

被引:0
|
作者
Liu, Liguang [1 ]
机构
[1] Renmin Univ China, Sch Informat, Dept Math, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
Metric measure space; Hausdorff content; Hardy-Littlewood maximal operator; SOBOLEV SPACES; CHOQUET INTEGRALS; CAPACITIES;
D O I
10.1016/j.jmaa.2016.05.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (chi, d, mu) a complete metric measure space and mu be a non-negative Borel regular measure satisfying the doubling condition with some dimensional constant d. We prove that the Hausdorif content of codimension alpha is an element of[0,infinity), denoted by H-alpha, and the Hardy Littlewood maximal operator M satisfy the strong-type inequality integral(x) (Mu)(p) dH(alpha) <= C integral(x) u(p) dH(alpha), 0 <= u is an element of L-loc(1) (chi), whenever p is an element of(max{0, 1 - alpha/d}, infinity). If mu further satisfies some reverse doubling condition with some other dimensional constant kappa, then for the endpoint case p = 1 - alpha/d with alpha is an element of[0, d) boolean AND [0, kappa], we also obtain the corresponding weak-type estimate for H-alpha and M. The fundamental point in the proofs is to introduce and develop a theory of the dyadic Hausdorff content H-D(alpha), which is a Choquet capacity comparable to H-alpha and has the strong subadditivity property. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:732 / 751
页数:20
相关论文
共 50 条
  • [41] Centered maximal function of Hardy-Littlewood on hyperbolic spaces
    Li, Hong-Quan
    Lohoue, Noel
    ARKIV FOR MATEMATIK, 2012, 50 (02): : 359 - 378
  • [42] Hardy-Littlewood maximal function on noncommutative Lorentz spaces
    Shao, Jingjing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [43] Rearrangement of Hardy-Littlewood maximal functions in Lorentz spaces
    Bastero, J
    Milman, M
    Ruiz, FJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (01) : 65 - 74
  • [44] Hardy-Littlewood maximal functions for measure of cupidal varieties
    Li, Hong-Quan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 88 (03): : 261 - 275
  • [45] Hardy-Littlewood maximal function inequality in Orlicz spaces
    Towghi, Nasser
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (1-2) : 17 - 20
  • [46] The Hardy-Littlewood maximal function and weighted Lorentz spaces
    Carro, MJ
    Soria, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 55 : 146 - 158
  • [47] Non-commutative Hardy-Littlewood maximal operator on symmetric spaces of τ-measurable operators
    Nessipbayev, Y.
    Tulenov, K.
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 12 (01)
  • [48] On interpolation of reflexive variable Lebesgue spaces on which the Hardy-Littlewood maximal operator is bounded
    Diening, Lars
    Karlovych, Oleksiy
    Shargorodsky, Eugene
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (03) : 347 - 352
  • [49] Hardy-Littlewood maximal function on noncommutative Lorentz spaces
    Jingjing Shao
    Journal of Inequalities and Applications, 2013
  • [50] Equivalence of operator norm for Hardy-Littlewood maximal operators and their truncated operators on Morrey spaces
    Zhang, Xingsong
    Wei, Mingquan
    Yan, Dunyan
    He, Qianjun
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (01) : 215 - 223