Classification of breast cancer histology images using MSMV-PFENet

被引:11
|
作者
Liu, Linxian [1 ,2 ]
Feng, Wenxiang [1 ]
Chen, Cheng [2 ]
Liu, Manhua [2 ]
Qu, Yuan [2 ,3 ]
Yang, Jiamiao [2 ,3 ,4 ]
机构
[1] Shanxi Univ, Sch Automat & Software Engn, Taiyuan 030006, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Inst Marine Equipment, Shanghai 200240, Peoples R China
[4] Shanghai Ctr Brain Sci & Brain Inspired Technol, Shanghai 200031, Peoples R China
关键词
D O I
10.1038/s41598-022-22358-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep learning has been used extensively in histopathological image classification, but people in this field are still exploring new neural network architectures for more effective and efficient cancer diagnosis. Here, we propose multi-scale, multi-view progressive feature encoding network (MSMV-PFENet) for effective classification. With respect to the density of cell nuclei, we selected the regions potentially related to carcinogenesis at multiple scales from each view. The progressive feature encoding network then extracted the global and local features from these regions. A bidirectional long short-term memory analyzed the encoding vectors to get a category score, and finally the majority voting method integrated different views to classify the histopathological images. We tested our method on the breast cancer histology dataset from the ICIAR 2018 grand challenge. The proposed MSMV-PFENet achieved 93.0% and 94.8% accuracies at the patch and image levels, respectively. This method can potentially benefit the clinical cancer diagnosis.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] BACH: Grand challenge on breast cancer histology images
    Aresta, Guilherme
    Araujo, Teresa
    Kwok, Scotty
    Chennamsetty, Sai Saketh
    Safwan, Mohammed
    Alex, Varghese
    Marami, Bahram
    Prastawa, Marcel
    Chan, Monica
    Donovan, Michael
    Fernandez, Gerardo
    Zeineh, Jack
    Kohl, Matthias
    Walz, Christoph
    Ludwig, Florian
    Braunewell, Stefan
    Baust, Maximilian
    Quoc Dang Vu
    Minh Nguyen Nhat To
    Kim, Eal
    Kwak, Jin Tae
    Galal, Sameh
    Sanchez-Freire, Veronica
    Brancati, Nadia
    Frucci, Maria
    Riccio, Daniel
    Wang, Yaqi
    Sun, Lingling
    Ma, Kaiqiang
    Fang, Jiannan
    Kone, Ismael
    Boulmane, Lahsen
    Campilho, Aurelio
    Eloy, Catarina
    Polonia, Antonio
    Aguiar, Paulo
    MEDICAL IMAGE ANALYSIS, 2019, 56 : 122 - 139
  • [32] Rapid tri-net: breast cancer classification from histology images using rapid tri-attention network
    Salunkhe, Pallavi Bhanudas
    Patil, Pravin Sahebrao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (30) : 74625 - 74655
  • [33] Nuclei Segmentation from Breast Cancer Histology Images
    Nikam, Amresh
    Gopal, Arpita
    2013 1ST INTERNATIONAL CONFERENCE ON EMERGING TRENDS AND APPLICATIONS IN COMPUTER SCIENCE (ICETACS), 2013, : 18 - 22
  • [34] BREASTUS: VISION TRANSFORMER FOR BREAST CANCER CLASSIFICATION USING BREAST ULTRASOUND IMAGES
    Saad, Muhammad
    Ullah, Mohib
    Afridi, Hina
    Cheikh, Faouzi Alaya
    Sajjad, Muhammad
    2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 246 - 253
  • [35] Classification of Lung Cancer Histology Images using Patch-Level Summary Statistics
    Graham, Simon
    Shaban, Muhammad
    Qaiser, Talha
    Koohbanani, Navid Alemi
    Khurram, Syed Ali
    Rajpoot, Nasir
    MEDICAL IMAGING 2018: DIGITAL PATHOLOGY, 2018, 10581
  • [36] Early Detection and Classification of Cancer Histology Images Using Artificial Intelligence Techniques: A Review
    El Aamrani, Soufiane
    El Alami, Anass Abdelhamid
    Fikri, Omar
    Elmoufidi, Abdelali
    Erritali, Mohammed
    International Journal for Engineering Modelling, 2025, 38 (01) : 73 - 98
  • [37] Vision Transformers for Breast Cancer Histology Image Classification
    Baroni, Giulia L.
    Rasotto, Laura
    Roitero, Kevin
    Siraj, Ameer Hamza
    Della Mea, Vincenzo
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2023 WORKSHOPS, PT II, 2024, 14366 : 15 - 26
  • [38] Dilated and soft attention-guided convolutional neural network for breast cancer histology images classification
    Zhong, Yutong
    Piao, Yan
    Zhang, Guohui
    MICROSCOPY RESEARCH AND TECHNIQUE, 2022, 85 (04) : 1248 - 1257
  • [39] EMS-Net: Ensemble of Multiscale Convolutional Neural Networks for Classification of Breast Cancer Histology Images
    Yang, Zhanbo
    Ran, Lingyan
    Zhang, Shizhou
    Xia, Yong
    Zhang, Yanning
    NEUROCOMPUTING, 2019, 366 : 46 - 53
  • [40] Grading of Colorectal Cancer using Histology Images
    Sengar, Namita
    Mishra, Neeraj
    Dutta, Malay Kishore
    Prinosil, Jiri
    Burget, Radim
    2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 529 - 532