A hybrid estimator for selectivity estimation

被引:4
|
作者
Ling, YB
Sun, W
Rishe, ND
Xiang, XJ
机构
[1] BELLCORE, Bell Commun Res Lab, Morristown, NJ 07960 USA
[2] Florida Int Univ, Sch Comp Sci, Miami, FL 33199 USA
[3] Novartis Pharmaceut, Dept Biostat, Summit, NJ 07901 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
hybrid estimator; sampling estimator; parametric estimator; table-based estimator; query optimization; estimation accuracy; estimation reliability;
D O I
10.1109/69.761667
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional sampling-based estimators infer the actual selectivity of a query based purely on runtime information gathering, excluding the previously collected information, which underutilizes the information available. Table-based and parametric estimators extrapolate the actual selectivity of a query based only on the previously collected information, ignoring on-line information, which results in inaccurate estimation in a frequently updated environment. We propose a novel hybrid estimator that utilizes and optimally combines the on-line and previously collected information. Theoretical analysis demonstrates that the on-line and previously collected information is complementary and that the comprehensive utilization of the on-line and previously collected information is of value for further performance improvement. Our theoretical results are validated by a comprehensive experimental study using a practical database, in the presence of insert, delete, and update operations. The hybrid approach is very promising in the sense that it provides the adaptive mechanism that allows the optimal combination of information obtained from different sources in order to achieve a higher estimation accuracy and reliability.
引用
收藏
页码:338 / 354
页数:17
相关论文
共 50 条
  • [41] Bootstrap variance estimation for Nadaraya quantile estimator
    K. Y. Cheung
    Stephen M. S. Lee
    [J]. TEST, 2010, 19 : 131 - 145
  • [42] A minimax Chebyshev estimator for bounded error estimation
    Eldar, Yonina C.
    Beck, Amir
    Teboulle, Marc
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (04) : 1388 - 1397
  • [43] Improving hedonic estimation with an inequality restricted estimator
    Gilley, OW
    Pace, RK
    [J]. REVIEW OF ECONOMICS AND STATISTICS, 1995, 77 (04) : 609 - 621
  • [44] Choice of estimator for distribution system state estimation
    Singh, R.
    Pal, B. C.
    Jabr, R. A.
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2009, 3 (07) : 666 - 678
  • [45] RESPONSE FUNCTION ESTIMATION USING THE EQUITY ESTIMATOR
    RANGASWAMY, A
    KRISHNAMURTHI, L
    [J]. JOURNAL OF MARKETING RESEARCH, 1991, 28 (01) : 72 - 83
  • [46] Design of a sliding perturbation estimator with bound estimation
    Lu, Yu-Sheng
    Li, Yueh-Tsang
    [J]. 2008 INTERNATIONAL WORKSHOP ON VARIABLE STRUCTURE SYSTEMS, 2008, : 308 - 313
  • [47] MOSE: A Monotonic Selectivity Estimator Using Learned CDF (Extended abstract)
    Sun, Luming
    Li, Cuiping
    Ji, Tao
    Chen, Hong
    [J]. 2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1489 - 1490
  • [48] Boundary estimation with the fuzzy set density estimator
    Fajardo, Jesus
    Harmath, Pedro
    [J]. METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2021, 79 (03): : 285 - 302
  • [49] Boundary estimation with the fuzzy set density estimator
    Jesús Fajardo
    Pedro Harmath
    [J]. METRON, 2021, 79 : 285 - 302
  • [50] On a New Hybrid Estimator for the Central Mean Space
    XIA Qi
    DONG Yuexiao
    [J]. Journal of Systems Science & Complexity, 2017, 30 (01) : 111 - 121