A hybrid estimator for selectivity estimation

被引:4
|
作者
Ling, YB
Sun, W
Rishe, ND
Xiang, XJ
机构
[1] BELLCORE, Bell Commun Res Lab, Morristown, NJ 07960 USA
[2] Florida Int Univ, Sch Comp Sci, Miami, FL 33199 USA
[3] Novartis Pharmaceut, Dept Biostat, Summit, NJ 07901 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
hybrid estimator; sampling estimator; parametric estimator; table-based estimator; query optimization; estimation accuracy; estimation reliability;
D O I
10.1109/69.761667
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional sampling-based estimators infer the actual selectivity of a query based purely on runtime information gathering, excluding the previously collected information, which underutilizes the information available. Table-based and parametric estimators extrapolate the actual selectivity of a query based only on the previously collected information, ignoring on-line information, which results in inaccurate estimation in a frequently updated environment. We propose a novel hybrid estimator that utilizes and optimally combines the on-line and previously collected information. Theoretical analysis demonstrates that the on-line and previously collected information is complementary and that the comprehensive utilization of the on-line and previously collected information is of value for further performance improvement. Our theoretical results are validated by a comprehensive experimental study using a practical database, in the presence of insert, delete, and update operations. The hybrid approach is very promising in the sense that it provides the adaptive mechanism that allows the optimal combination of information obtained from different sources in order to achieve a higher estimation accuracy and reliability.
引用
收藏
页码:338 / 354
页数:17
相关论文
共 50 条
  • [1] Hybrid LASSO and Neural Network Estimator for Gaze Estimation
    Iyer, S. Deepthi
    Ratnasangu, Hariharan
    [J]. PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 2579 - 2582
  • [2] Estimation of Line Parameters Using the Hybrid State Estimator
    Asprou, Markos
    Kyriakides, Elias
    [J]. 2013 IEEE GRENOBLE POWERTECH (POWERTECH), 2013,
  • [3] HASE: A hybrid approach to selectivity estimation for conjunctive predicates
    Yu, Xiaohui
    Koudas, Nick
    Zuzarte, Calisto
    [J]. ADVANCES IN DATABASE TECHNOLOGY - EDBT 2006, 2006, 3896 : 460 - 477
  • [5] XHQE: A hybrid system for scalable selectivity estimation of XML queries
    E.-S. M. El-Alfy
    S. Mohammed
    A. F. Barradah
    [J]. Information Systems Frontiers, 2016, 18 : 1233 - 1249
  • [6] XHQE: A hybrid system for scalable selectivity estimation of XML queries
    El-Alfy, E. -S. M.
    Mohammed, S.
    Barradah, A. F.
    [J]. INFORMATION SYSTEMS FRONTIERS, 2016, 18 (06) : 1233 - 1249
  • [7] Hybrid methodology for precipitation estimation using Hydro-Estimator over Brazil
    de Siqueira, Ricardo Almeida
    Vila, Daniel
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (11) : 4244 - 4263
  • [8] Holistic and Compact Selectivity Estimation for Hybrid Queries over RDF Graphs
    Wagner, Andreas
    Bicer, Veli
    Tran, Thanh
    Studer, Rudi
    [J]. SEMANTIC WEB - ISWC 2014, PT II, 2014, 8797 : 97 - 113
  • [9] IMM estimator versus optimal estimator for hybrid systems
    Bar-Shalom, Y
    Challa, S
    Blom, HAP
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2005, 41 (03) : 986 - 991
  • [10] Sensor-Based Adaptive Estimation in a Hybrid Environment Employing State Estimator Filters
    Kulkarni, Ashvini
    Beulet, P. Augusta Sophy
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (01): : 127 - 146