Machine learning line bundle cohomologies of hypersurfaces in toric varieties

被引:46
|
作者
Klaewer, Daniel [1 ]
Schlechter, Lorenz [1 ]
机构
[1] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany
关键词
Cohomology; Line bundles; Toric varieties; Machine learning; Neural network;
D O I
10.1016/j.physletb.2019.01.002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Different techniques from machine learning are applied to the problem of computing line bundle cohomologies of (hypersurfaces in) toric varieties. While a naive approach of training a neural network to reproduce the cohomologies fails in the general case, by inspecting the underlying functional form of the data we propose a second approach. The cohomologies depend in a piecewise polynomial way on the line bundle charges. We use unsupervised learning to separate the different polynomial phases. The result is an analytic formula for the cohomologies. This can be turned into an algorithm for computing analytic expressions for arbitrary (hypersurfaces in) toric varieties. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页码:438 / 443
页数:6
相关论文
共 50 条
  • [11] Density of quasismooth hypersurfaces in simplicial toric varieties
    Lindner, Niels
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2017, 29 (01): : 261 - 288
  • [12] Asymptotically maximal families of hypersurfaces in toric varieties
    Bertrand, B
    GEOMETRIAE DEDICATA, 2006, 118 (01) : 49 - 70
  • [13] On stability of tangent bundle of toric varieties
    Biswas, Indranil
    Dey, Arijit
    Genc, Ozhan
    Poddar, Mainak
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2021, 131 (02):
  • [14] ON THE HODGE STRUCTURE OF PROJECTIVE HYPERSURFACES IN TORIC VARIETIES
    BATYREV, VV
    COX, DA
    DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) : 293 - 338
  • [15] Machine Learning Line Bundle Cohomology
    Brodie, Callum R.
    Constantin, Andrei
    Deen, Rehan
    Lukas, Andre
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2020, 68 (01):
  • [16] Machine learning line bundle connections
    Ashmore, Anthony
    Deen, Rehan
    He, Yang-Hui
    Ovrut, Burt A.
    PHYSICS LETTERS B, 2022, 827
  • [17] Points of bounded height on smooth hypersurfaces of toric varieties
    Mignot, Teddy
    ACTA ARITHMETICA, 2016, 172 (01) : 1 - 97
  • [18] The web of Calabi-Yau hypersurfaces in toric varieties
    Avram, AC
    Kreuzer, M
    Mandelberg, M
    Skarke, H
    NUCLEAR PHYSICS B, 1997, 505 (03) : 625 - 640
  • [19] Line Bundle Cohomologies on CICYs with Picard Number Two
    Larfors, M.
    Schneider, R.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2019, 67 (12):
  • [20] MIRROR SYMMETRY AND THE MODULI SPACE FOR GENERIC HYPERSURFACES IN TORIC VARIETIES
    BERGLUND, P
    KATZ, S
    KLEMM, A
    NUCLEAR PHYSICS B, 1995, 456 (1-2) : 153 - 204