De Rham cohomology of diffeological spaces and foliations

被引:9
|
作者
Hector, G. [2 ]
Macias-Virgos, E. [1 ]
Sanmartin-Carbon, E. [3 ]
机构
[1] Univ Santiago de Compostela, Dept Xeometria & Topoloxia, Santiago De Compostela 15782, Spain
[2] Math Univ Lyon 1, Inst C Jordan UMR CNRS 5028, F-69622 Villeurbanne, France
[3] Univ Vigo, Dept Matemat, F CC EE, Vigo 36310, Spain
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2011年 / 21卷 / 3-4期
关键词
Diffeological space; De Rham cohomology; Foliation; Base-like cohomology; LIE FOLIATIONS; INTEGRALS;
D O I
10.1016/j.indag.2011.04.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, F) be a foliated manifold. We prove that there is a canonical isomorphism between the complex of base-like forms Omega(b)*(M, F) of the foliation and the "De Rham complex" of the space of leaves M/F when considered as a "diffeological" quotient. Consequently, the corresponding cohomology groups H-b*(M, F) and H*(M/F) are isomorphic. (C) 2011 Royal Netherlands Academy of Arts and Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:212 / 220
页数:9
相关论文
共 50 条
  • [21] On endomorphisms of the de Rham cohomology functor
    Li, Shizhang
    Mondal, Shubhodip
    [J]. GEOMETRY & TOPOLOGY, 2024, 28 (02) : 759 - 802
  • [22] De Rham cohomology of the supermanifolds and superstring BRST cohomology
    Belopolsky, A.
    [J]. Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 403 (1-2):
  • [23] DE RHAM COHOMOLOGY OF WHITNEY PRESTRATIFICATIONS
    VERONA, A
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (18): : 1340 - &
  • [24] De Rham Cohomology and Integration in Manifolds
    A. B. Sossinsky
    [J]. Mathematical Notes, 2020, 107 : 1034 - 1037
  • [25] ON DE RHAM AND DOLBEAULT COHOMOLOGY OF SOLVMANIFOLDS
    S. CONSOLE
    A. FINO
    H. KASUYA
    [J]. Transformation Groups, 2016, 21 : 653 - 680
  • [26] de Rham cohomology of local cohomology modules II
    Tony J. Puthenpurakal
    Rakesh B. T. Reddy
    [J]. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2019, 60 : 77 - 94
  • [27] Dwork cohomology, de Rham cohomology, and hypergeometric functions
    Adolphson, A
    Sperber, S
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (02) : 319 - 348
  • [28] A spectral sequence for de Rham cohomology
    Xie, Bingyong
    [J]. ACTA ARITHMETICA, 2011, 149 (03) : 245 - 263
  • [29] On approximations of the de Rham complex and their cohomology
    Bavula, V. V.
    Akcin, H. Melis Tekin
    [J]. COMMUNICATIONS IN ALGEBRA, 2018, 46 (04) : 1447 - 1463
  • [30] ON DE RHAM AND DOLBEAULT COHOMOLOGY OF SOLVMANIFOLDS
    Console, S.
    Fino, A.
    Kasuya, H.
    [J]. TRANSFORMATION GROUPS, 2016, 21 (03) : 653 - 680