Equivalence of linear response among extended optimal velocity models

被引:76
|
作者
Hasebe, K [1 ]
Nakayama, A
Sugiyama, Y
机构
[1] Aichi Univ, Fac Business Adm, Aichi 4700296, Japan
[2] Gifu Keizai Univ, Gifu 5038550, Japan
[3] Nagoya Univ, Grad Sch Informat Sci, Dept Complex Syst Sci, Nagoya, Aichi 4648601, Japan
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 01期
关键词
D O I
10.1103/PhysRevE.69.017103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the property of extended optimal velocity (OV) models of traffic flow, in which a driver looks at arbitrary number of vehicles that precede. We prove an equivalence of linear response among extended models. This equivalence provides a natural understanding of the improvement of the stability of traffic flow.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] D-optimal designs for multi-response linear mixed models
    Xin Liu
    Rong-Xian Yue
    Weng Kee Wong
    [J]. Metrika, 2019, 82 : 87 - 98
  • [22] Optimal design of experiments for multivariate response in two-factor linear models
    Schwabe, R
    [J]. MULTIDIMENSIONAL STATISTICAL ANALYSIS AND THEORY OF RANDOM MATRICES, 1996, : 235 - 242
  • [23] ON THE EQUIVALENCE OF D-OPTIMAL AND G-OPTIMAL DESIGNS IN HETEROSCEDASTIC MODELS
    WONG, WK
    [J]. STATISTICS & PROBABILITY LETTERS, 1995, 25 (04) : 317 - 321
  • [24] Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods
    BAI ZhaoJun
    LI RenCang
    LIN WenWei
    [J]. Science China Mathematics, 2016, 59 (08) : 1443 - 1460
  • [25] Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods
    ZhaoJun Bai
    RenCang Li
    WenWei Lin
    [J]. Science China Mathematics, 2016, 59 : 1443 - 1460
  • [26] Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods
    Bai ZhaoJun
    Li RenCang
    Lin WenWei
    [J]. SCIENCE CHINA-MATHEMATICS, 2016, 59 (08) : 1443 - 1460
  • [27] Linear Models are Most Favorable among Generalized Linear Models
    Lee, Kuan-Yun
    Courtade, Thomas A.
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1213 - 1218
  • [28] Solvable optimal velocity models and asymptotic trajectory
    Nakanishi, K
    Itoh, K
    Igarashi, Y
    Bando, M
    [J]. PHYSICAL REVIEW E, 1997, 55 (06) : 6519 - 6532
  • [29] On Bayesian D-optimal design criteria and the General Equivalence Theorem in joint generalized linear models for the mean and dispersion
    Pinto, Edmilson Rodrigues
    de Leon, Antonio Ponce
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2014, 28 (04) : 483 - 491
  • [30] Optimal designs in sparse linear models
    Yimin Huang
    Xiangshun Kong
    Mingyao Ai
    [J]. Metrika, 2020, 83 : 255 - 273