Dynamic response and power production of a floating integrated wind, wave and tidal energy system

被引:70
|
作者
Li, Liang [1 ,2 ]
Gao, Yan [1 ]
Yuan, Zhiming [1 ]
Day, Sandy [1 ]
Hu, Zhiqiang [3 ]
机构
[1] Univ Strathclyde, Dept Naval Architecture Ocean & Marine Engn, Glasgow G4 0LZ, Lanark, Scotland
[2] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[3] Newcastle Univ, Sch Marine Sci & Technol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
Renewable energy; Offshore floating wind turbine; Wave energy converter; Tidal turbine; Dynamic response; PERFORMANCE; TURBINE; STATE;
D O I
10.1016/j.renene.2017.09.080
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study deals with the hydro-aero-mooring coupled dynamic analysis of a new offshore floating renewable energy system, which integrates an offshore floating wind turbine (OFWT), a wave energy converter (WEC) and tidal turbines. The primary objective is to enhance the power production and reduce the platform motions through the combination of the three types of renewable energy systems. Simulation results show that the combined concept achieves a synergy between the floating wind turbine, the wave energy converter and the tidal turbines. Compared with a single floating wind turbine, the combined concept undertakes reduced surge and pitch motions. The overall power production increases by approximately 22%-45% depending on the environmental conditions. Moreover, the power production of the wind turbine is more stable due to the reduced platform motions and the combined concept is less sensitive to the transient effect induced by an emergency shutdown of the wind turbine. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:412 / 422
页数:11
相关论文
共 50 条
  • [31] Optimized Dispatching for Integrated Energy System With Wind Power
    Zhang, Tao
    Yan, Xing
    Zhang, Renmin
    Ye, Qingquan
    Ma, Junhua
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [32] Dynamic response of a semi-submersible floating wind turbine-point absorption wave energy hybrid energy system under rated and extreme conditions
    Hua, Hongchang
    Zhang, Yuquan
    Qin, Zhansheng
    Yang, Yang
    Fernandez-Rodriguez, Emmanuel
    PHYSICS OF FLUIDS, 2025, 37 (01)
  • [33] INTEGRATED OVERTOPPING WAVE ENERGY CONVERTER IN A HYBRID OFFSHORE WIND TURBINE POWER GENERATION SYSTEM
    Loannou, Artemis
    Kalfas, Anestis I.
    Karambas, Theofanis V.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2014, VOL 3B, 2014,
  • [34] MOTION RESPONSE ANALYSIS OF FLOATING WIND TURBINE COMBINED WITH WAVE ENERGY CONVERTER
    Sai, K. Chaitanya
    Patil, Ajay H.
    Karmakar, D.
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON ASIAN AND PACIFIC COASTS, APAC 2019, 2020, : 1099 - 1106
  • [35] Experimental investigation on an OWC wave energy converter integrated into a floating offshore wind turbine
    Zhou, Yu
    Ning, Dezhi
    Chen, Lifen
    Mayon, Robert
    Zhang, Chongwei
    ENERGY CONVERSION AND MANAGEMENT, 2023, 276
  • [36] An integrated system of the floating wave energy converter and electrolytic hydrogen producer
    Temeev, AA
    Belokopytov, VP
    Temeev, SA
    RENEWABLE ENERGY, 2006, 31 (02) : 225 - 239
  • [37] DYNAMIC RESPONSE OF A SPAR-TYPE FLOATING WIND TURBINE AT POWER GENERATION
    Utsunomiya, Tomoaki
    Yoshida, Shigeo
    Kiyoki, Soichiro
    Sato, Iku
    Lshida, Shigesuke
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 7: OCEAN SPACE UTILIZATION, 2014,
  • [38] Influence of Hydraulic PTO Parameters on Power Capture and Motion Response of a Floating Wind-Wave Hybrid System
    Wang, Yuanzhi
    Huang, Shuting
    Xue, Gang
    Liu, Yanjun
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (11)
  • [39] Dynamic response of multi-unit floating offshore wind turbines to wave, current, and wind loads
    Lamei, A.
    Hayatdavoodi, M.
    Riggs, H. R.
    Ertekin, R. C.
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2024, 16 (02)
  • [40] ENERGY ANALYSIS OF WAVE AND TIDAL POWER
    HARRISON, R
    SMITH, KG
    VARLEY, JS
    IEE PROCEEDINGS-A-SCIENCE MEASUREMENT AND TECHNOLOGY, 1980, 127 (05): : 274 - 278