Regularity for 3D MHD equations in Lorentz space

被引:0
|
作者
Liu, Xiangao [1 ]
Liu, Yueli [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2022年 / 137卷 / 02期
关键词
NAVIER-STOKES EQUATIONS; SUITABLE WEAK SOLUTIONS; INTERIOR REGULARITY;
D O I
10.1140/epjp/s13360-022-02362-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We shall consider the regularity for 3D MHD equations in this paper. When the velocity field is bounded in a critical space and the magnetic field satisfies a weaker condition, it can be concluded that the weak solution of MHD equation is a smooth solution. We prove that the weak solutions are Holder continuous if the velocity field belongs to some Lorentz space and the magnetic field belongs to a bigger space than Lorentz space, that is the magnetic field satisfies an even weaker condition than the velocity filed. Our main mathematical tool is the backward uniqueness theory for the parabolic operators established by Escauriaza, Seregin and. Sverak.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Regularity results for weak solutions of the 3D MHD equations
    Wu, JH
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 10 (1-2) : 543 - 556
  • [22] Regularity for 3D inhomogeneous incompressible MHD equations with vacuum
    Kim, Jae-Myoung
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (11)
  • [23] Global weighted regularity for the 3D axisymmetric MHD equations
    Guo, Zhengguang
    Wang, Yufei
    Li, Yeping
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04):
  • [24] Global weighted regularity for the 3D axisymmetric MHD equations
    Zhengguang Guo
    Yufei Wang
    Yeping Li
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [25] ON THE GEVREY REGULARITY OF SOLUTIONS TO THE 3D IDEAL MHD EQUATIONS
    Cheng, Feng
    Xu, Chao-Jiang
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (11) : 6485 - 6506
  • [26] Some new regularity criteria for the 3D MHD equations
    Ni, Lidiao
    Guo, Zhengguang
    Zhou, Yong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (01) : 108 - 118
  • [27] On regularity criterion to the 3D axisymmetric incompressible MHD equations
    Liu, Jitao
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (15) : 4535 - 4544
  • [28] On the regularity criterion of weak solutions for the 3D MHD equations
    Sadek Gala
    Maria Alessandra Ragusa
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [29] Regularity criteria for 3D Hall-MHD equations
    Xuanji Jia
    Yong Zhou
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [30] A logarithmically improved regularity criterion for the 3D MHD equations in Morrey-Campanato space
    Gala, Sadek
    Ragusa, Maria Alessandra
    [J]. AIMS MATHEMATICS, 2017, 2 (01): : 16 - 23