Hidden symmetry in quasi-exactly solvable fractional power potentials

被引:3
|
作者
Schulze-Halberg, A [1 ]
机构
[1] ETH Zentrum, Dept Math, CH-8092 Zurich, Switzerland
来源
PROGRESS OF THEORETICAL PHYSICS | 2003年 / 110卷 / 06期
关键词
D O I
10.1143/PTP.110.1235
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that certain fractional power potentials possess the hidden symmetry as defined by M. Znojil. Schrodinger equations for such symmetric potentials are shown to be related to each other by a simple change of coordinate which involves a fractional power of the imaginary unit i. Our result explains and generalizes a recent one on two particular fractional power potentials.
引用
收藏
页码:1235 / 1240
页数:6
相关论文
共 50 条
  • [21] Novel quasi-exactly solvable models with anharmonic singular potentials
    Agboola, Davids
    Zhang, Yao-Zhong
    ANNALS OF PHYSICS, 2013, 330 : 246 - 262
  • [22] Quasi-exactly solvable quartic potentials with centrifugal and Coulombic terms
    Znojil, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (22): : 4203 - 4211
  • [23] Multidimensional quasi-exactly solvable potentials with two known eigenstates
    Tkachuk, VM
    Fityo, TV
    PHYSICS LETTERS A, 2003, 309 (5-6) : 351 - 356
  • [24] Periodic Quasi-Exactly Solvable Models
    S. Sree Ranjani
    A. K. Kapoor
    P. K. Panigrahi
    International Journal of Theoretical Physics, 2005, 44 : 1167 - 1176
  • [25] Quasi-exactly solvable quasinormal modes
    Ho, Choon-Lin
    Cho, Hing-Tong
    PARTICLES, STRINGS, AND COSMOLOGY, 2007, 957 : 409 - 412
  • [26] Real Lie algebras of differential operators and quasi-exactly solvable potentials
    GonzalezLopez, A
    Kamran, N
    Olver, P
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 354 (1710): : 1165 - 1193
  • [27] Quasi-exactly solvable potentials in Wigner-Dunkl quantum mechanics
    Quesne, C.
    EPL, 2024, 145 (05)
  • [28] Heun functions and quasi-exactly solvable double-well potentials
    Chen, Bei-Hua
    Wu, Yan
    Xie, Qiong-Tao
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (03)
  • [29] Periodic quasi-exactly solvable models
    Ranjani, SS
    Kapoor, AK
    Panigrahi, PK
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (08) : 1167 - 1176
  • [30] THE STRUCTURE OF QUASI-EXACTLY SOLVABLE SYSTEMS
    BRIHAYE, Y
    GILLER, S
    GONERA, C
    KOSINSKI, P
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (08) : 4340 - 4349