ROBUST BOUNDS IN MULTIVARIATE EXTREMES

被引:3
|
作者
Engelke, Sebastian [1 ]
Ivanovs, Jevgenijs [2 ]
机构
[1] Ecole Polytech Fed Lausanne, EPFL FSB MATHAA STAT, Stn 8, CH-1015 Lausanne, Switzerland
[2] Aarhus Univ, Dept Math, DK-8000 Aarhus C, Denmark
来源
ANNALS OF APPLIED PROBABILITY | 2017年 / 27卷 / 06期
基金
瑞士国家科学基金会;
关键词
Extremal dependence; Pickands' function; model misspecification; stress test; robust bounds; convex optimization; MODEL UNCERTAINTY; DEPENDENCE; DIVERSIFICATION; RISK;
D O I
10.1214/17-AAP1294
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Extreme value theory provides an asymptotically justified framework for estimation of exceedance probabilities in regions where few or no observations are available. For multivariate tail estimation, the strength of extremal dependence is crucial and it is typically modeled by a parametric family of spectral distributions. In this work, we provide asymptotic bounds on exceedance probabilities that are robust against misspecification of the extremal dependence model. They arise from optimizing the statistic of interest over all dependence models within some neighborhood of the reference model. A certain relaxation of these bounds yields surprisingly simple and explicit expressions, which we propose to use in applications. We show the effectiveness of the robust approach compared to classical confidence bounds when the model is misspecified. The results are further applied to quantify the effect of model uncertainty on the Value-at-Risk of a financial portfolio.
引用
收藏
页码:3706 / 3734
页数:29
相关论文
共 50 条
  • [21] Extremes of multivariate ARMAX processes
    Ferreira, Marta
    Ferreira, Helena
    TEST, 2013, 22 (04) : 606 - 627
  • [22] Robust estimation of extremes
    Dupuis, DJ
    Field, CA
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (02): : 199 - 215
  • [23] Flexible modeling of multivariate spatial extremes
    Gong, Yan
    Huser, Raphael
    SPATIAL STATISTICS, 2022, 52
  • [24] Bias correction in conditional multivariate extremes
    Escobar-Bach, Mikael
    Goegebeur, Yuri
    Guillou, Armelle
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 1773 - 1795
  • [25] Dependence between two multivariate extremes
    Ferreira, I-I.
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (05) : 586 - 591
  • [26] Multivariate option price models and extremes
    Husler, J
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (04) : 853 - 869
  • [27] Determining the dependence structure of multivariate extremes
    Simpson, E. S.
    Wadsworth, J. L.
    Tawn, J. A.
    BIOMETRIKA, 2020, 107 (03) : 513 - 532
  • [28] Sea and Wind: Multivariate Extremes at Work
    Laurens de Haan
    John de Ronde
    Extremes, 1998, 1 (1)
  • [29] Principal component analysis for multivariate extremes
    Drees, Holger
    Sabourin, Anne
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 908 - 943
  • [30] LIMIT THEORY FOR MULTIVARIATE SAMPLE EXTREMES
    DEHAAN, L
    RESNICK, SI
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 40 (04): : 317 - 337