ROBUST BOUNDS IN MULTIVARIATE EXTREMES

被引:3
|
作者
Engelke, Sebastian [1 ]
Ivanovs, Jevgenijs [2 ]
机构
[1] Ecole Polytech Fed Lausanne, EPFL FSB MATHAA STAT, Stn 8, CH-1015 Lausanne, Switzerland
[2] Aarhus Univ, Dept Math, DK-8000 Aarhus C, Denmark
来源
ANNALS OF APPLIED PROBABILITY | 2017年 / 27卷 / 06期
基金
瑞士国家科学基金会;
关键词
Extremal dependence; Pickands' function; model misspecification; stress test; robust bounds; convex optimization; MODEL UNCERTAINTY; DEPENDENCE; DIVERSIFICATION; RISK;
D O I
10.1214/17-AAP1294
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Extreme value theory provides an asymptotically justified framework for estimation of exceedance probabilities in regions where few or no observations are available. For multivariate tail estimation, the strength of extremal dependence is crucial and it is typically modeled by a parametric family of spectral distributions. In this work, we provide asymptotic bounds on exceedance probabilities that are robust against misspecification of the extremal dependence model. They arise from optimizing the statistic of interest over all dependence models within some neighborhood of the reference model. A certain relaxation of these bounds yields surprisingly simple and explicit expressions, which we propose to use in applications. We show the effectiveness of the robust approach compared to classical confidence bounds when the model is misspecified. The results are further applied to quantify the effect of model uncertainty on the Value-at-Risk of a financial portfolio.
引用
收藏
页码:3706 / 3734
页数:29
相关论文
共 50 条
  • [1] Ozone concentrations: A robust analysis of multivariate extremes
    Dupuis, DJ
    [J]. TECHNOMETRICS, 2005, 47 (02) : 191 - 201
  • [2] Influence measures and robust estimators of dependence in multivariate extremes
    Yu-Ling Tsai
    Duncan J. Murdoch
    Debbie J. Dupuis
    [J]. Extremes, 2011, 14 : 343 - 363
  • [3] Influence measures and robust estimators of dependence in multivariate extremes
    Tsai, Yu-Ling
    Murdoch, Duncan J.
    Dupuis, Debbie J.
    [J]. EXTREMES, 2011, 14 (04) : 343 - 363
  • [4] Multivariate extremes
    Fougères, AL
    [J]. EXTREME VALUES IN FINANCE, TELECOMMUNICATIONS, AND THE ENVIRONMENT, 2004, 99 : 373 - 388
  • [5] Multivariate extremes in lakes
    Woolway, R. Iestyn
    Tong, Yan
    Feng, Lian
    Zhao, Gang
    Dinh, Dieu Anh
    Shi, Haoran
    Zhang, Yunlin
    Shi, Kun
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [6] Ordered multivariate extremes
    Nadarajah, S
    Anderson, CW
    Tawn, JA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 : 473 - 496
  • [7] Modeling multivariate extremes
    Nolan, John P.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2024, 16 (02)
  • [8] Extremes for multivariate expectiles
    Maume-Deschamps, Veronique
    Rulliere, Didier
    Said, Khalil
    [J]. STATISTICS & RISK MODELING, 2018, 35 (3-4) : 111 - 140
  • [9] STATISTICS OF MULTIVARIATE EXTREMES
    SMITH, RL
    TAWN, JA
    YUEN, HK
    [J]. INTERNATIONAL STATISTICAL REVIEW, 1990, 58 (01) : 47 - 58