A 65-nm CMOS Temperature-Compensated Mobility-Based Frequency Reference for Wireless Sensor Networks

被引:22
|
作者
Sebastiano, Fabio [1 ]
Breems, Lucien J. [1 ]
Makinwa, Kofi A. A. [2 ]
Drago, Salvatore [1 ]
Leenaerts, Domine M. W. [1 ]
Nauta, Bram [3 ]
机构
[1] NXP Semicond, NL-5656 AE Eindhoven, Netherlands
[2] Delft Univ Technol, Elect Instrumentat Lab, Fac Elect Engn Comp Sci & Math, Delft, Netherlands
[3] Univ Twente, CTIT Res Inst, IC Design Grp, NL-7500 AE Enschede, Netherlands
关键词
Charge carrier mobility; CMOS integrated circuits; crystal-less clock; frequency reference; low voltage; MOSFET; sigma-delta modulation; smart sensors; temperature compensation; temperature sensors; ultra-low power; wireless sensor networks; INACCURACY; 3-SIGMA;
D O I
10.1109/JSSC.2011.2143630
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A temperature-compensated CMOS frequency reference based on the electron mobility in a MOS transistor is presented. Over the temperature range from -55 degrees C to 125 degrees C, the frequency spread of the complete reference is less than +/- 0.5% after a two-point trim and less than +/- 2.7% after a one-point trim. These results make it suitable for use in Wireless Sensor Network nodes. Fabricated in a baseline 65-nm CMOS process, the 150 kHz frequency reference occupies 0.2 mm(2) and draws 42.6 mu A from a 1.2-V supply at room temperature.
引用
收藏
页码:1544 / 1552
页数:9
相关论文
共 50 条
  • [21] An Energy-Efficient Mobility-Based Cluster Head Selection for Lifetime Enhancement of Wireless Sensor Networks
    Umbreen, Sehar
    Shehzad, Danish
    Shafi, Numan
    Khan, Bilal
    Habib, Usman
    IEEE ACCESS, 2020, 8 : 207779 - 207793
  • [22] A Compact Resistor-Based CMOS Temperature Sensor With an Inaccuracy of 0.12 °C (3σ) and a Resolution FoM of 0.43 pJ . K2 in 65-nm CMOS
    Choi, Woojun
    Lee, Yongtae
    Kim, Seonhong
    Lee, Sanghoon
    Jang, Jieun
    Chun, Junhyun
    Makinwa, Kofi A. A.
    Chae, Youngcheol
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (12) : 3356 - 3367
  • [23] Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology
    Sasagawa, Kiyotaka
    Shishido, Sanshiro
    Ando, Keisuke
    Matsuoka, Hitoshi
    Noda, Toshihiko
    Tokuda, Takashi
    Kakiuchi, Kiyomi
    Ohta, Jun
    OPTICS EXPRESS, 2013, 21 (09): : 11132 - 11140
  • [24] Design and development of a temperature-compensated fiber optic polarimetric pressure sensor based on photonic crystal fiber at 1550 nm
    Gahir, Harneet K.
    Khanna, Dhiraj
    APPLIED OPTICS, 2007, 46 (08) : 1184 - 1189
  • [25] A 0.4-V Subnanowatt 8-Bit1-kS/s SAR ADC in 65-nm CMOS for Wireless Sensor Applications
    Harikumar, Prakash
    Wikner, J. Jacob
    Alvandpour, Atila
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2016, 63 (08) : 743 - 747
  • [26] 65/30 GHz dual-frequency wirelessly powered monolithic 1.83 mm2 wireless temperature sensor using a 3-stage inductor-peaked rectifier with on-chip antenna in 65-nm CMOS
    Gao, Hao
    Matters-Kammerer, Marion K.
    Baltus, Peter
    2018 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM - IMS, 2018, : 1275 - 1277
  • [27] A 14.17pJ • K2 FoM CMOS Temperature Sensor With 173 m2 Sensing Core for Remote Sensing in 65-nm CMOS
    Shui, Yuhang
    Wang, Aili
    IEEE SENSORS JOURNAL, 2023, 23 (22) : 27059 - 27067
  • [28] Low Duty Cycle, Energy-Efficient and Mobility-Based Boarder Node—MAC Hybrid Protocol for Wireless Sensor Networks
    Abdul Razaque
    Khaled M. Elleithy
    Journal of Signal Processing Systems, 2015, 81 : 265 - 284
  • [29] Temperature-compensated distributed refractive index sensor based on an etched multi-core fiber in optical frequency domain reflectometry
    Zhu, Zongda
    Ba, Dexin
    Liu, Lu
    Qiu, Liqiang
    Dong, Yongkang
    OPTICS LETTERS, 2021, 46 (17) : 4308 - 4311
  • [30] Design of 60-GHz Amplifiers Based on Over Neutralization and Optimized Inter-Stage Matching Networks in 65-nm CMOS
    Li, Di
    Zhang, Lei
    Wang, Yan
    2015 IEEE INTERNATIONAL SYMPOSIUM ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY (RFIT), 2015, : 130 - 132