Cellular automata universality revisited

被引:0
|
作者
Martin, B [1 ]
机构
[1] Univ Nice, Lab 13S, UPRESA 6070, F-06903 Sophia Antipolis, France
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose an original arithmetization of cellular automata independent of Turing machines and present a new classification of universal cellular automata according to the way universality is achieved. Indeed, there are many possibilities to get the universality of cellular automata all based on simulations. Consider, for instance the simulation of any other cellular automaton or the simulation of a given universal Turing machine. The two simulations are quite different but both lead to the construction of a universal cellular automaton. We will distinguish three different simulations. The three kinds of corresponding universal machines are defined as simulation-universal, hereditary-universal and construction-universal. As an illustration, we propose an alternative definition of Kolmogorov complexity. We also recall an undecidability result and a well-known complexity result. The last two results hold as soon as we have a hereditary-universal machine.
引用
收藏
页码:329 / 339
页数:11
相关论文
共 50 条
  • [21] Efficient Pushdown Cellular Automata: Universality, Time and Space Hierarchies
    Kutrib, Martin
    JOURNAL OF CELLULAR AUTOMATA, 2008, 3 (02) : 93 - 114
  • [22] Computational Universality and 1/f Noise in Elementary Cellular Automata
    Ninagawa, Shigeru
    2013 22ND INTERNATIONAL CONFERENCE ON NOISE AND FLUCTUATIONS (ICNF), 2013,
  • [23] Computation and Universality: Class IV versus Class III Cellular Automata
    Martinez, Genaro J.
    Seck-Tuoh-Mora, Juan C.
    Zenil, Hector
    JOURNAL OF CELLULAR AUTOMATA, 2012, 7 (5-6) : 393 - 430
  • [24] Universality Issues in Reversible Computing Systems and Cellular Automata (Extended Abstract)
    Morita, Kenichi
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2010, 253 (06) : 23 - 31
  • [25] On Universality of Radius 1/2 Number-Conserving Cellular Automata
    Imai, Katsunobu
    Alhazov, Artiom
    UNCONVENTIONAL COMPUTATION, PROCEEDINGS, 2010, 6079 : 45 - 55
  • [26] On the Iota-Delta Function: Universality in Cellular Automata's Representation
    Ozelim, Luan C. de S. M.
    Cavalcante, Andre L. B.
    Borges, Lucas P. de F.
    COMPLEX SYSTEMS, 2013, 21 (04): : 283 - 296
  • [27] On the iota-delta function: Universality in cellular automata's representation
    Ozelim, Luan C. de S.M.
    Cavalcante, André L.B.
    Borges, Lucas P. de F.
    Complex Systems, 2012, 21 (04): : 283 - 296
  • [28] Communication complexity meets cellular automata: Necessary conditions for intrinsic universality
    Briceno, Raimundo
    Rapaport, Ivan
    NATURAL COMPUTING, 2021, 20 (02) : 307 - 320
  • [29] Number-conserving reversible cellular automata and their computation-universality
    Morita, K
    Imai, K
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 2001, 35 (03): : 239 - 258
  • [30] Communication complexity meets cellular automata: Necessary conditions for intrinsic universality
    Raimundo Briceño
    Ivan Rapaport
    Natural Computing, 2021, 20 : 307 - 320