Bounds for the expected supremum of some non-stationary Gaussian processes

被引:0
|
作者
Jafari, Hossein [1 ]
Zhao, Yiqiang Q. [2 ]
机构
[1] Chabahar Maritime Univ, Dept Math, Chabahar, Iran
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Non-stationary Gaussian process; Malliavin calculus; subfractional Brownian motion; bifractional Brownian motion; multifractional Brownian motion; FRACTIONAL BROWNIAN-MOTION; RUIN PROBABILITY; CALL CENTER; EXTREMES;
D O I
10.1080/17442508.2021.2018445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this article is to obtain closed-form lower and upper bounds for the expectation of the supremum of some non-stationary Gaussian processes. This supremum is an important quantity in applications such as finance and queueing systems. The covariance function structure, decomposition of the processes and probability inequalities are applied for some examples of non-stationary Gaussian processes, including sub-fractional, bifractional and multifractional Brownian motions. Malliavin calculus operators are also applied in some cases to find bounds for the density and expectation of the supremum of these processes.
引用
收藏
页码:1031 / 1053
页数:23
相关论文
共 50 条
  • [11] STATIONARY OPERATOR FOR NON-STATIONARY PROCESSES
    ZUBAREV, DN
    [J]. DOKLADY AKADEMII NAUK SSSR, 1965, 164 (03): : 537 - &
  • [12] Hausdorff Measure of Space Anisotropic Gaussian Processes with Non-stationary Increments
    Jun WANG
    Zhenlong CHEN
    Weijie YUAN
    Guangjun SHEN
    [J]. Acta Mathematicae Applicatae Sinica, 2025, 41 (01) : 114 - 132
  • [13] Multivariate Extreme Value Distributions for Vector of Non-stationary Gaussian Processes
    Ambetkar, Vighnesh
    Kuppa, Ramakrishna
    Gupta, Sayan
    [J]. INTERNATIONAL CONFERENCE ON VIBRATION PROBLEMS 2015, 2016, 144 : 504 - 511
  • [14] Learning Non-stationary System Dynamics Online Using Gaussian Processes
    Rottmann, Axel
    Burgard, Wolfram
    [J]. PATTERN RECOGNITION, 2010, 6376 : 192 - 201
  • [15] Adaptive Robotic Information Gathering via non-stationary Gaussian processes
    Chen, Weizhe
    Khardon, Roni
    Liu, Lantao
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2024, 43 (04): : 405 - 436
  • [16] Non-stationary Gaussian signal classification
    Roberts, G
    Zoubir, AM
    Boashash, B
    [J]. 1996 IEEE TENCON - DIGITAL SIGNAL PROCESSING APPLICATIONS PROCEEDINGS, VOLS 1 AND 2, 1996, : 526 - 529
  • [17] Surveillance of non-stationary processes
    Lazariv, Taras
    Schmid, Wolfgang
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (03) : 305 - 331
  • [18] NON-STATIONARY PROCESSES AND SPECTRUM
    NAGABHUSHANAM, K
    BHAGAVAN, CS
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (05): : 1203 - +
  • [19] ON PREDICTION OF NON-STATIONARY PROCESSES
    ABDRABBO, NA
    PRIESTLE.MB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1967, 29 (03) : 570 - &
  • [20] Predicting non-stationary processes
    Ryabko, Daniil
    Hutter, Marcus
    [J]. APPLIED MATHEMATICS LETTERS, 2008, 21 (05) : 477 - 482