Real homotopy theory of semi-algebraic sets

被引:22
|
作者
Hardt, Robert [1 ]
Lambrechts, Pascal
Turchin, Victor
Volic, Ismar
机构
[1] Rice Univ, Dept Math, Houston, TX 77005 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2011年 / 11卷 / 05期
基金
美国国家科学基金会;
关键词
OPERADS;
D O I
10.2140/agt.2011.11.2477
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We complete the details of a theory outlined by Kontsevich and Soibelman that associates to a semi-algebraic set a certain graded commutative differential algebra of "semi-algebraic differential forms" in a functorial way. This algebra encodes the real homotopy type of the semi-algebraic set in the spirit of the de Rham algebra of differential forms on a smooth manifold. Its development is needed for Kontsevich's proof of the formality of the little cubes operad.
引用
收藏
页码:2477 / 2545
页数:69
相关论文
共 50 条
  • [21] Superresolution of principal semi-algebraic sets
    Mihai Putinar
    [J]. Analysis and Mathematical Physics, 2021, 11
  • [22] Smooth Points on Semi-algebraic Sets
    Harris, Katherine
    Hauenstein, Jonathan D.
    Szanto, Agnes
    [J]. ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2020, 54 (03): : 105 - 108
  • [23] Connectivity in Symmetric Semi-Algebraic Sets
    Riener, Cordian
    Schabert, Robin
    Vu, Thi Xuan
    [J]. PROCEEDINGS OF THE 2024 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2024, 2024, : 162 - 169
  • [24] Computation of the distance to semi-algebraic sets
    Ferrier, C
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2000, 5 : 139 - 156
  • [25] Crossing patterns of semi-algebraic sets
    Alon, N
    Pach, J
    Pinchasi, R
    Radoicic, R
    Sharir, M
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 111 (02) : 310 - 326
  • [27] Analytic reparametrization of semi-algebraic sets
    Yomdin, Y.
    [J]. JOURNAL OF COMPLEXITY, 2008, 24 (01) : 54 - 76
  • [28] Classification of semi-algebraic p-adic sets up to semi-algebraic bijection
    Cluckers, R
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2001, 540 : 105 - 114
  • [29] Topological elementary equivalence of closed semi-algebraic sets in the real plane
    Kuijpers, B
    Paredaens, J
    Van den Bussche, J
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2000, 65 (04) : 1530 - 1555
  • [30] COMPUTING ROADMAPS OF GENERAL SEMI-ALGEBRAIC SETS
    CANNY, J
    [J]. COMPUTER JOURNAL, 1993, 36 (05): : 504 - 514