The optimal control problem and approximation of some parabolic hemivariational inclusion

被引:0
|
作者
Debinska-Nagorska, Anna [1 ]
Just, Andrzej [1 ]
Stempien, Zdzislaw [1 ]
机构
[1] Tech Univ Lodz, Inst Math, PL-90924 Lodz, Poland
关键词
optimal control problem; Galerkin approximation; parabolic hemivariational inequality; multifunction;
D O I
10.1002/zamm.200700113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the optimal control problem described by a hemivariational parabolic inclusion. We derive the existence of optimal solutions. Then we prove the convergence of optimal values for approximated control problems to the one for the original problem. Finally, we give a simple example. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim.
引用
收藏
页码:218 / 226
页数:9
相关论文
共 50 条
  • [21] OPTIMAL CONTROL PROBLEM FOR PARABOLIC VARIATIONAL INEQUALITIES
    汪更生
    ActaMathematicaScientia, 2001, (04) : 509 - 525
  • [22] The solving of the problem of optimal control by the parabolic system
    Koryashkina, L.S.
    Problemy Upravleniya I Informatiki (Avtomatika), 1998, (02): : 94 - 101
  • [23] A priori estimates for the approximation of a parabolic boundary control problem
    Briani, A
    Falcone, M
    CONTROL AND ESTIMATION OF DISTRIBUTED PARAMETER SYSTEMS, 1998, 126 : 49 - 65
  • [24] A parabolic boundary-value problem and a problem of optimal control
    Pukalskyi I.D.
    Journal of Mathematical Sciences, 2011, 174 (2) : 159 - 168
  • [25] Numerical approximation of a class of nonlinear parabolic optimal control problems
    Huang, Xiao
    Li, Benxiu
    Zhang, Gan
    2012 2ND INTERNATIONAL CONFERENCE ON UNCERTAINTY REASONING AND KNOWLEDGE ENGINEERING (URKE), 2012, : 278 - 280
  • [26] APPROXIMATION OF RELAXED NONLINEAR PARABOLIC OPTIMAL-CONTROL PROBLEMS
    CHRYSSOVERGHI, I
    BACOPOULOS, A
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 77 (01) : 31 - 50
  • [27] Finite Element Approximation of Semilinear Parabolic Optimal Control Problems
    Fu, Hongfei
    Rui, Hongxing
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (04) : 489 - 504
  • [28] APPROXIMATION OF AN OPTIMAL CONTROL PROBLEM FOR A SYSTEM WITH AFTEREFFECT
    KRASOVSK.NN
    DOKLADY AKADEMII NAUK SSSR, 1966, 167 (03): : 540 - &
  • [29] Approximation of Thermoelasticity Frictional Contact Problem with Hemivariational Inequality
    Sestak, Ivan
    Jovanovic, Bosko S.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '09), 2009, 1184 : 49 - +
  • [30] Numerical solution of a parabolic optimal control problem in economics
    Lapin, A.
    Zhang, S.
    Lapin, S.
    12TH INTERNATIONAL CONFERENCE - MESH METHODS FOR BOUNDARY: VALUE PROBLEMS AND APPLICATIONS, 2019, 1158