Positive radial solutions for a class of quasilinear boundary value problems in a ball

被引:8
|
作者
Hai, D. D. [1 ]
Williams, J. L. [1 ]
机构
[1] Mississippi State Univ, Dept Math, Mississippi State, MS 39762 USA
关键词
p-Laplace; Singular; Positive; Radial solutions;
D O I
10.1016/j.na.2011.08.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence and nonexistence of positive radial solutions for the boundary value problems {-Delta(p)u = h(u) + lambda f (u) in Omega, u = 0 on partial derivative Omega, where Delta(p)u = div(vertical bar del u vertical bar(p-2) del u), p > 1, Omega is the open unit ball in R-n, h, f : (0, infinity) -> R are allowed to be singular at 0, f is asymptotically p-linear, and lambda is a positive parameter. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1744 / 1750
页数:7
相关论文
共 50 条