Microstructure and optical properties of Au-Y2O3-stabilized ZrO2 nanocomposite films

被引:0
|
作者
Sirinakis, G [1 ]
Siddique, R [1 ]
Monokroussos, C [1 ]
Carpenter, MA [1 ]
Kaloyeros, AE [1 ]
机构
[1] SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA
关键词
D O I
10.1557/JMR.2005.0300
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanocomposite films consisting of gold nanoparticles embedded in an yttria stabilized zirconia, (YSZ) matrix were synthesized at room temperature by radio-frequency co-sputtering from YSZ and An targets at a 5 mTorr working pressure. The films were subsequently annealed for 2 h in 1 atm argon, with the annealing temperature varied from 600 to 1000 degrees C in steps of 100 degrees C. The composition, microstructure, and optical properties of the films were characterized as a function of annealing temperature by Rutherford backscattering spectrometry, scanning electron microscopy, Auger electron spectroscopy, x-ray diffraction, and absorption spectroscopy. An optical absorption band due to the surface plasmon resonance (SPR) of the Au nanoparticles was observed around a wavelength of 600 nm. Furthermore, the SPR band full width at half-maximum exhibited an inverse linear dependence on the radius of the Au nanoparticle, with a slope parameter-A = -0. 18, indicating a weak interaction between the YSZ matrix and the An nanoparticles. The experimentally observed SPR dependence on nanoparticle size is discussed within the context of the Mie theory and its size-dependent optical constants.
引用
收藏
页码:2516 / 2522
页数:7
相关论文
共 50 条
  • [31] Microstructure of ZrO2 films: Hydrophilic properties and optical band gaps
    Bastami, Hajieh
    Grayeli, Alireza
    Arman, Ali
    Matos, Robert S.
    Ferreira, Nilson S.
    da Fonseca Filho, Henrique D.
    Ţălu, Ştefan
    Materials Today Communications, 2025, 45
  • [32] Electrical and Optical Properties of VO2 Polymorphic Films Grown Epitaxially on Y-Stabilized ZrO2
    Choi, Songhee
    Chang, Sung-Jin
    Oh, Junhyeob
    Jang, Jae Hyuck
    Lee, Shinbuhm
    ADVANCED ELECTRONIC MATERIALS, 2018, 4 (06):
  • [33] RHOMBOHEDRAL PHASE IN Y2O3-PARTIALLY-STABILIZED ZRO2
    KITANO, Y
    MORI, Y
    ISHITANI, A
    MASAKI, T
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1988, 71 (01) : C34 - C36
  • [34] Analysis of tensile strength of Y2O3 stabilized ZrO2
    Nakayama, Y
    Kakita, S
    ADVANCES IN ENGINEERING PLASTICITY, PTS 1-2, 2000, 177-1 : 467 - 472
  • [35] Preparations and characterizations of new mesoporous ZrO2 and Y2O3-stabilized ZrO2 spherical powders
    Zhang, Hui
    Lu, Hu
    Zhu, Yawei
    Li, Fan
    Duan, Renguan
    Zhang, Mei
    Wang, Xidong
    POWDER TECHNOLOGY, 2012, 227 : 9 - 16
  • [36] Mechanical properties and microstructure of CeO2-stabilized ZrO2/Al2O3 composites
    Maschio, S.
    Sbaizero, O.
    Meriani, S.
    InterCeram: International Ceramic Review, 1995, 44 (02)
  • [37] Optical and electrical properties of transparent conducting In2O3–ZrO2 films
    S. B. Qadri
    H. Kim
    H. R. Khan
    A. Piqué
    J. S. Horwitz
    D. Chrisey
    E. F. Skelton
    Journal of Materials Research, 2000, 15 : 21 - 24
  • [38] MECHANICAL-PROPERTIES OF PRESSURELESS SINTERED TETRAGONAL Y2O3-STABILIZED ZRO2
    GRITZNER, G
    KONRAD, R
    PUCHNER, C
    KLADNIG, W
    POWDER METALLURGY INTERNATIONAL, 1991, 23 (01): : 26 - 30
  • [39] Electrode Effects for Dielectric Properties of 8 mol% Y2O3 Stabilized ZrO2
    Yamamura, Hiroshi
    Yagi, Yuhji
    Kakinuma, Katsuyoshi
    ELECTROCHEMISTRY, 2008, 76 (10) : 734 - 739
  • [40] E(-)-BEAM DEPOSITION OF IN2O3 STABILIZED ZRO2 FILMS
    QADRI, SB
    SKELTON, EF
    HARFORD, MZ
    JONES, R
    LUBITZ, P
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1991, 9 (03): : 510 - 511