Nonparametric Classification of Satellite Images

被引:0
|
作者
Dinuls, Romans [1 ]
Mednieks, Ints [1 ]
机构
[1] Inst Elect & Comp Sci, 14 Dzerbenes St, LV-1006 Riga, Latvia
关键词
Image classification; Unsupervised clustering; Multispectral imaging; Nonparametric statistics; Machine learning;
D O I
10.1145/3274250.3274260
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The task of classifying the objects on a satellite image into predefined categories is the topic of the article. The problems arising while designing a practicable classifier are discussed. The general conditions for robustness of a classifier are provided. To solve the problems mentioned, a robust classification approach is proposed aiming at completely nonparametric unsupervised clustering with consequent association of the clusters with target categories using multiple sources of the testing and training data. The nonparametric clustering used is primarily based on ranking and grouping. Completely nonparametric cluster union and cleaning procedures are presented; theoretical basics for other parts of the approach are provided. The software implementation and complexity of the methodology are discussed. The approach aims at getting the highest possible classification accuracy under real conditions for images with more than 100 million pixels.
引用
下载
收藏
页码:64 / 68
页数:5
相关论文
共 50 条
  • [21] On the classification of multispectral satellite images using the multilayer perceptron
    Venkatesh, YV
    Raja, SK
    PATTERN RECOGNITION, 2003, 36 (09) : 2161 - 2175
  • [22] Filter Banks for Hyperspectral Pixel Classification of Satellite Images
    Rajadell, Olga
    Garcia-Sevilla, Pedro
    Pla, Filiberto
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, PROCEEDINGS, 2009, 5856 : 1039 - 1046
  • [23] Ensemble Classification Technique for Water Detection in Satellite Images
    Jony, Rabiul Islam
    Woodley, Alan
    Raj, Aishvarya
    Perrin, Dimitri
    2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 778 - 785
  • [24] Classification of Satellite Images Using the Cellular Automata Approach
    Espinola, Moises
    Ayala, Rosa
    Leguizamon, Saturnino
    Menenti, Massimo
    OPEN KNOWLEDGE SOCIETY: A COMPUTER SCIENCE AND INFORMATION SYSTEMS MANIFESTO, 2008, 19 : 521 - +
  • [25] Information Slicing: An Application to Object Classification in Satellite Images
    Shah, Hina
    Mitra, Suman K.
    Banerjee, Asim
    SIXTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS & IMAGE PROCESSING ICVGIP 2008, 2008, : 458 - 465
  • [26] OVER-SEGMENTATION OF VHR SATELLITE IMAGES USING NONPARAMETRIC BAYESIAN ITERATIVE CLUSTERING
    Huang, Wei
    Tang, Hong
    Yang, Xin
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1013 - 1016
  • [27] Object detection in color images using nonparametric Bayes classification and orthogonal functions
    Celenk, M
    Shao, Y
    VISUAL INFORMATION PROCESSING VII, 1998, 3387 : 147 - 155
  • [28] Estimation of Forest Crown Density Using Pleiades Satellite Data and Nonparametric Classification Method
    Kalbi, Siavash
    Hassanvand, Mohammad Nabi
    Soosani, Javad
    Abrary, Kambiz
    Naghavi, Hamed
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2018, 46 (07) : 1151 - 1158
  • [29] Estimation of Forest Crown Density Using Pleiades Satellite Data and Nonparametric Classification Method
    Siavash Kalbi
    Mohammad Nabi Hassanvand
    Javad Soosani
    Kambiz Abrary
    Hamed Naghavi
    Journal of the Indian Society of Remote Sensing, 2018, 46 : 1151 - 1158
  • [30] Study of lCM parameters influence on images satellite contextual classification
    Khedam, R
    Belhadj-Aissa, A
    Ranchin, T
    GEOINFORMATION FOR EUROPEAN-WIDE INTEGRATION, 2003, : 79 - 85