Physics based modelling of porous lithium ion battery electrodes-A review

被引:24
|
作者
Le Houx, James [1 ]
Kramer, Denis [1 ]
机构
[1] Univ Southampton, Fac Engn & Phys Sci, Energy Technol Res Grp, Southampton, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
Review; Li-ion battery; Image-based modelling; Porous electrode; EFFECTIVE TRANSPORT-PROPERTIES; LICOO2; CATHODE; NANO-SCALE; TORTUOSITY; SIMULATION; MICROSTRUCTURE; FLOW;
D O I
10.1016/j.egyr.2020.02.021
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Mathematical models have been used extensively to simulate physical and electrochemical processes occurring inside lithium-ion batteries. Physical based models, coupled with experimental validation, have revealed greater scientific understanding of the processes inside the battery. A region of specific interest is the porous electrode. However, the heterogeneous geometry of the porous structure presents practical difficulties in developing suitable models. The present paper is a review of the studies on the physical modelling of lithium ion porous electrodes. Here we review common methods to model the (de)intercalation behaviour of porous Li-ion battery electrodes. Advantages and drawbacks are contrasted to highlight some challenges that suggest directions and priorities for further research in the field. (C) 2020 Published by Elsevier Ltd.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [21] Graphene and Lithium-Based Battery Electrodes: A Review of Recent Literature
    Lavagna, Luca
    Meligrana, Giuseppina
    Gerbaldi, Claudio
    Tagliaferro, Alberto
    Bartoli, Mattia
    ENERGIES, 2020, 13 (18)
  • [22] Natural dye based organic lithium ion battery electrodes: Lithium storage mechanistic studies
    John, George
    Miroshnikov, Mikhail
    Kato, Keiko
    Arava, Leela Mohana Reddy
    Ajayan, Pulickel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [23] A continuum of physics-based lithium-ion battery models reviewed
    Planella, F. Brosa
    Ai, W.
    Boyce, A. M.
    Ghosh, A.
    Korotkin, I
    Sahu, S.
    Sulzer, V
    Timms, R.
    Tranter, T. G.
    Zyskin, M.
    Cooper, S. J.
    Edge, J. S.
    Foster, J. M.
    Marinescu, M.
    Wu, B.
    Richardson, G.
    PROGRESS IN ENERGY, 2022, 4 (04):
  • [24] Tortuosity Anisotropy in Lithium-Ion Battery Electrodes
    Ebner, Martin
    Chung, Ding-Wen
    Garcia, R. Edwin
    Wood, Vanessa
    ADVANCED ENERGY MATERIALS, 2014, 4 (05)
  • [25] Polymer design for lithium-ion battery electrodes
    Bao, Zhenan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [26] The coupled lithium ion diffusion and stress in battery electrodes
    Eshghinejad, Ahmadreza
    Li, Jiangyu
    MECHANICS OF MATERIALS, 2015, 91 : 343 - 350
  • [27] PULSED LASER ABLATION OF LITHIUM ION BATTERY ELECTRODES
    Lutey, Adrian H. A.
    Fortunato, Alessandro
    Ascari, Alessandro
    Carmignato, Simone
    Orazi, Leonardo
    PROCEEDINGS OF THE ASME 9TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2014, VOL 2, 2014,
  • [28] Lithium-ion battery: a review
    Bidwe M.M.
    Kulkarni S.G.
    International Journal of Vehicle Information and Communication Systems, 2024, 9 (02) : 135 - 163
  • [29] A microscopic investigation of ion and electron transport in lithium-ion battery porous electrodes using the lattice Boltzmann method
    Jiang, Z. Y.
    Qu, Z. G.
    Zhou, L.
    Tao, W. Q.
    APPLIED ENERGY, 2017, 194 : 530 - 539
  • [30] Nanohybrid electrodes of porous hollow SnO2 and graphene aerogel for lithium ion battery anodes
    Choi, Jaewon
    Myung, Yoon
    Gu, Min Guk
    Kim, Sung-Kon
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 71 : 345 - 350