Application of Deep Learning Models for Automated Identification of Parkinson's Disease: A Review (2011-2021)

被引:47
|
作者
Loh, Hui Wen [1 ]
Hong, Wanrong [2 ]
Ooi, Chui Ping [1 ]
Chakraborty, Subrata [3 ]
Barua, Prabal Datta [2 ,3 ,4 ]
Deo, Ravinesh C. [5 ]
Soar, Jeffrey [4 ]
Palmer, Elizabeth E. [6 ,7 ]
Acharya, U. Rajendra [1 ,4 ,8 ,9 ,10 ]
机构
[1] Singapore Univ Social Sci, Sch Sci & Technol, Singapore 599494, Singapore
[2] Cogninet Australia, Cogninet Brain Team, Sydney, NSW 2010, Australia
[3] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
[4] Univ Southern Queensland, Fac Business Educ Law & Arts, Sch Business Informat Syst, Toowoomba, Qld 4350, Australia
[5] Univ Southern Queensland, Sch Sci, Springfield, Qld 4300, Australia
[6] Sydney Childrens Hosp Network, Ctr Clin Genet, Randwick, NSW 2031, Australia
[7] Univ New South Wales, Sch Womens & Childrens Hlth, Randwick, NSW 2031, Australia
[8] Ngee Ann Polytech, Sch Engn, Singapore 599489, Singapore
[9] Asia Univ, Dept Bioinformat & Med Engn, Taichung 413, Taiwan
[10] Kumamoto Univ, Res Org Adv Sci & Technol IROAST, Kumamoto 8608555, Japan
关键词
Parkinson's disease (PD); deep learning; computer-aided diagnosis (CAD); SPECT; PET; MRI; EEG; gait; handwriting; speech; NEURAL-NETWORK APPROACH; DIFFERENTIAL-DIAGNOSIS; CLASSIFICATION; EEG; GAIT; SPEECH; TRANSFORMATION; PREDICTION; PET;
D O I
10.3390/s21217034
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting over 6 million people globally. Although there are symptomatic treatments that can increase the survivability of the disease, there are no curative treatments. The prevalence of PD and disability-adjusted life years continue to increase steadily, leading to a growing burden on patients, their families, society and the economy. Dopaminergic medications can significantly slow down the progression of PD when applied during the early stages. However, these treatments often become less effective with the disease progression. Early diagnosis of PD is crucial for immediate interventions so that the patients can remain self-sufficient for the longest period of time possible. Unfortunately, diagnoses are often late, due to factors such as a global shortage of neurologists skilled in early PD diagnosis. Computer-aided diagnostic (CAD) tools, based on artificial intelligence methods, that can perform automated diagnosis of PD, are gaining attention from healthcare services. In this review, we have identified 63 studies published between January 2011 and July 2021, that proposed deep learning models for an automated diagnosis of PD, using various types of modalities like brain analysis (SPECT, PET, MRI and EEG), and motion symptoms (gait, handwriting, speech and EMG). From these studies, we identify the best performing deep learning model reported for each modality and highlight the current limitations that are hindering the adoption of such CAD tools in healthcare. Finally, we propose new directions to further the studies on deep learning in the automated detection of PD, in the hopes of improving the utility, applicability and impact of such tools to improve early detection of PD globally.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] The Role of Deep Learning and Gait Analysis in Parkinson's Disease: A Systematic Review
    Franco, Alessandra
    Russo, Michela
    Amboni, Marianna
    Ponsiglione, Alfonso Maria
    Di Filippo, Federico
    Romano, Maria
    Amato, Francesco
    Ricciardi, Carlo
    SENSORS, 2024, 24 (18)
  • [22] Lightweight deep learning model for automated STN localization using MER in Parkinson's disease
    Maged, Ahmed
    Zhu, Minwei
    Gao, Wenpeng
    Hosny, Mohamed
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96
  • [23] Automated Identification of Postural Control for Individuals with Parkinson's Disease using a Machine Learning Approach
    Li, Yumeng
    Zhang, Shuqi
    Odeh, Christina
    Guan, Li
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2019, 51 (06): : 355 - 355
  • [24] Parkinson's Disease Identification from Speech Signals Using Machine Learning Models
    Saxena, Rahul
    Andrew, J.
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 2, AITA 2023, 2024, 844 : 201 - 213
  • [25] Parkinson’s Disease Identification from Speech Signals Using Machine Learning Models
    Saxena, Rahul
    Andrew, J.
    Lecture Notes in Networks and Systems, 2367, (201-213):
  • [26] Machine Learning Models for Parkinson Disease: Systematic Review
    Tabashum, Thasina
    Snyder, Robert Cooper
    O'Brien, Megan K.
    Albert, Mark, V
    JMIR MEDICAL INFORMATICS, 2024, 12
  • [27] Application of Reinforcement Learning to Deep Brain Stimulation in a Computational Model of Parkinson's Disease
    Lu, Meili
    Wei, Xile
    Che, Yanqiu
    Wang, Jiang
    Loparo, Kenneth A.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2020, 28 (01) : 339 - 349
  • [28] A Structured Literature Review Investigating the Current Treatment Landscape in Patients with Richter's Transformation (2011-2021)
    Prescott, Jennifer
    Pandey, Prabhakar
    Hall, Adam
    Nathani, Jyothsna
    Pandey, Rishabh
    Ryland, Katherine Elizabeth
    Raut, Monika
    Squires, Patrick
    BLOOD, 2022, 140 : 12418 - 12420
  • [29] Deep learning and wearable sensors for the diagnosis and monitoring of Parkinson's disease: A systematic review
    Sigcha, Luis
    Borzi, Luigi
    Amato, Federica
    Rechichi, Irene
    Ramos-Romero, Carlos
    Cardenas, Andres
    Gasco, Luis
    Olmo, Gabriella
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 229
  • [30] Parkinson's disease diagnosis using deep learning: A bibliometric analysis and literature review
    Abumalloh, Rabab Ali
    Nilashi, Mehrbakhsh
    Samad, Sarminah
    Ahmadi, Hossein
    Alghamdi, Abdullah
    Alrizq, Mesfer
    Alyami, Sultan
    AGEING RESEARCH REVIEWS, 2024, 96