Phase Transition for a Contact Process with Random Slowdowns

被引:0
|
作者
Kuoch, K. [1 ]
机构
[1] Univ Paris 05, UMR CNRS 8145, MAP5, 45 Rue St Peres, F-75006 Paris, France
关键词
Interacting particle systems; contact process; percolation; phase transition; random environment; RANDOM ENVIRONMENT; PERCOLATION PROCESSES; SURVIVAL; DIES;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by a model of an area-wide integrated pest management, we develop an interacting particle system evolving in a random environment. It is a generalized contact process in which the birth rate takes two possible values, determined either by a dynamic or a static random environment. Our goal is to understand the phase diagram of both models by identifying the mechanisms that permit coexistence or extinction of the process.
引用
收藏
页码:53 / 85
页数:33
相关论文
共 50 条
  • [31] Mixed-order phase transition of the contact process near multiple junctions
    Juhasz, Robert
    Igloi, Ferenc
    [J]. PHYSICAL REVIEW E, 2017, 95 (02)
  • [32] The weak survival/strong survival phase transition for the contact process on a homogeneous tree
    Lalley, SP
    Sellke, TM
    [J]. BULLETIN BRAZILIAN MATHEMATICAL SOCIETY, 2002, 33 (03): : 341 - 350
  • [33] The phase transition in a random hypergraph
    Karonski, M
    Luczak, T
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 142 (01) : 125 - 135
  • [34] Phase transition on the degree sequence of a random graph process with vertex copying and deletion
    Cai, Kai-Yuan
    Dong, Zhao
    Liu, Ke
    Wu, Xian-Yuan
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (04) : 885 - 895
  • [35] The phase transition in a random graph
    Luczak, T
    [J]. COMBINATORICS, PAUL ERDOS IS EIGHTY, VOL. 2, 1996, 2 : 399 - 422
  • [36] Extreme slowdowns for one-dimensional excited random walks
    Peterson, Jonathon
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (02) : 458 - 481
  • [37] Ring contact electrode process for high density phase change random access memory
    Ryoo, Kyung-Chang
    Song, Yoon Jong
    Shin, Jae-Min
    Park, Sang-Su
    Lim, Dong-Won
    Kim, Jae-Hyun
    Park, Woon-Ik
    Sim, Ku-Ri
    Jeong, Ji-Hyun
    Kang, Dae-Hwan
    Kong, Jun-Hyuck
    Jeong, Chang-Wook
    Oh, Jae-Hee
    Park, Jae-Hyun
    Kim, Jeong-In
    Oh, Yong-Tae
    Kim, Ji-Sun
    Eun, Seong-Ho
    Lee, Kwang-Woo
    Koh, Seong-Pil
    Fai, Yung
    Koh, Gwan-Hyob
    Jeong, Gi-Tae
    Jeong, Hong-Sik
    Kim, Kinam
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (4B): : 2001 - 2005
  • [38] Scaling of a random walk on a supercritical contact process
    den Hollander, F.
    dos Santos, R. S.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (04): : 1276 - 1300
  • [39] The contact process as seen from a random walk
    Bethuelsen, Stein Andreas
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (01): : 571 - 585
  • [40] ASYMPTOTIC SHAPE FOR THE CONTACT PROCESS IN RANDOM ENVIRONMENT
    Garet, Olivier
    Marchand, Regine
    [J]. ANNALS OF APPLIED PROBABILITY, 2012, 22 (04): : 1362 - 1410