The effects of intra-fraction organ motion on the delivery of intensity-modulated field with a multileaf collimator

被引:128
|
作者
Chui, CS [1 ]
Yorke, E [1 ]
Hong, L [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
关键词
intensity-modulated radiation therapy; multileaf collimator; organ motion;
D O I
10.1118/1.1578771
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Intensity-modulated radiation therapy can be conveniently delivered with a multileaf collimator. With this method, the entire field is not delivered at once, but rather it is composed of many subfields defined by the leaf positions as a function of beam on time. At any given instant, only these subfields are delivered. During treatment, if the organ moves, part of the volume may move in or out of these subfields. Due to this interplay between organ motion and leaf motion the delivered dose may be different from what was planned. In this work, we present a method that calculates the effects of organ motion on delivered dose. The direction of organ motion may be parallel or perpendicular to the leaf motion, and the effect can be calculated for a single fraction or for multiple fractions. Three breast patients and four lung patients were included in this study, with the amplitude of the organ motion varying from +/-3.5 turn to +/-10 mm, and the period varying from 4 to 8 seconds. Calculations were made for these patients with and without organ motion, and results were examined in terms of isodose distribution and dose volume histograms. Each calculation was repeated ten times in order to estimate the statistical uncertainties. For selected patients, calculations were also made with conventional treatment technique. The effects of organ motion on conventional techniques were compared relative to that on IMRT techniques. For breast treatment, the effect of organ motion primarily broadened the penumbra at the posterior field edge. The dose in the rest of the treatment volume was not significantly affected. For lung treatment, the effect also broadened the penumbra and degraded the coverage of the planning target volume (PTV). However, the coverage of the clinical target volume (CTV) was not much affected, provided the PTV margin was adequate. The same effects were observed for both IMRT and conventional treatment techniques. For the IMRT technique, the standard deviations of ten samples of a 30-fraction calculation were very small for all patients, implying that over a typical treatment course of 30 fractions, the delivered dose was very close to the expected value. Hence, under typical clinical conditions, the effect of organ motion on delivered dose can be calculated without considering the interplay between the organ motion and the leaf motion. It can be calculated as the weighted average of the dose distribution without organ motion with the distribution of organ motion. Since the effects of organ motion on dose were comparable for both IMRT and conventional techniques, the PTV margin should remain the same for both techniques. (C) 2003 American Association of Physicists in Medicine.
引用
收藏
页码:1736 / 1746
页数:11
相关论文
共 50 条
  • [1] The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation
    Yu, CX
    Jaffray, DA
    Wong, JW
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 1998, 43 (01): : 91 - 104
  • [2] Delivery of intensity-modulated treatments with dynamic multileaf collimator
    Boyer, AL
    Strait, JP
    [J]. PROCEEDINGS OF THE XIITH INTERNATIONAL CONFERENCE ON THE USE OF COMPUTERS IN RADIATION THERAPY, 1997, : 13 - 15
  • [3] Effects of multileaf collimator parameters on treatment planning of intensity-modulated radiotherapy
    Wu, Vincent W. C.
    [J]. MEDICAL DOSIMETRY, 2007, 32 (01) : 38 - 43
  • [4] Intensity-modulated radiation therapy using a multileaf collimator
    Webb, S
    [J]. RADIATION RESEARCH, VOL 2, CONGRESS PROCEEDINGS, 2000, : 660 - 663
  • [5] Segmental and dynamic intensity-modulated radiotherapy delivery techniques for micro-multileaf collimator
    Agazaryan, N
    Solberg, TD
    [J]. MEDICAL PHYSICS, 2003, 30 (07) : 1758 - 1767
  • [6] Minimizing the number of segments in a delivery sequence for intensity-modulated radiation therapy with a multileaf collimator
    Dai, JR
    Zhu, YP
    [J]. MEDICAL PHYSICS, 2001, 28 (10) : 2113 - 2120
  • [7] A modified method of planning and delivery for dynamic multileaf collimator intensity-modulated radiation therapy
    Dogan, N
    Leybovich, LB
    Sethi, A
    Krasin, M
    Emami, B
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2000, 47 (01): : 241 - 245
  • [8] Delivery of intensity-modulated radiation therapy with a multileaf collimator: Comparison of step-and-shoot and dynamic leaf motion methods
    Chui, CS
    Chan, MF
    Ling, CC
    [J]. PROCEEDINGS OF THE 22ND ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4, 2000, 22 : 460 - 462
  • [9] Delivery of intensity-modulated radiation therapy with a conventional multileaf collimator: Comparison of dynamic and segmental methods
    Chui, CS
    Chan, MF
    Yorke, E
    Spirou, S
    Ling, CC
    [J]. MEDICAL PHYSICS, 2001, 28 (12) : 2441 - 2449
  • [10] Delivery of intensity-modulated radiotherapy with dynamic multileaf collimators
    Mohan, R
    Wu, Y
    Wu, QW
    [J]. GENERAL PRACTICE OF RADIATION ONCOLOGY PHYSICS IN THE 21ST CENTURY, 2000, (26): : 113 - 135