The K-connection location problem in a plane

被引:7
|
作者
Huang, SM
Batta, R
Klamroth, K
Nagi, R
机构
[1] SUNY Buffalo, Dept Ind Engn, Buffalo, NY 14260 USA
[2] Tsing Hua Univ, Dept Ind Engn, Beijing 100084, Peoples R China
[3] Univ Erlangen Nurnberg, Dept Appl Math, D-91058 Erlangen, Germany
关键词
planar location; connection; capacity;
D O I
10.1007/s10479-005-2045-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper determines the optimal location of K connections in the plane, where a connection links pairs of existing facilities. Both uncapacitated and capacitated versions of the problem are considered. Discretization results for general polyhedral gauges and other properties are established. Two heuristic algorithms are developed for each case using the concept of a shortest path flow set coupled with a sequential location and allocation approach. Computational results show that the algorithms are efficient and accurate.
引用
收藏
页码:193 / 209
页数:17
相关论文
共 50 条
  • [41] An approximation algorithm for the k-Level Concentrator Location Problem
    Drexl, Moritz A.
    OPERATIONS RESEARCH LETTERS, 2011, 39 (05) : 355 - 358
  • [42] Direct solution of a minimax location problem on the plane with rectilinear metric in a rectangular area
    Plotnikov, P. V.
    Krivulin, N. K.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2018, 14 (02): : 116 - 130
  • [43] On the problem of establishing the location of the electrical surface (image plane) for a tungsten field emitter
    Forbes, RG
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 1997, 202 : 139 - 161
  • [44] On the problem of establishing the location of the electrical surface (image plane) for a tungsten field emitter
    University of Surrey, School of Electronic Engineering, Guildford, Surrey GU2 5XH, United Kingdom
    Z. Phys. Chem., 1-2 (139-161):
  • [45] SILK-CONNECTION PLANE AND PERIPHERAL PLANE
    AMBRUS, A
    FORSS, B
    HASLER REVIEW, 1981, 14 (01): : 14 - 20
  • [46] An O(log k)-approximation algorithm for the k minimum spanning tree problem in the plane
    Garg, N
    Hochbaum, DS
    ALGORITHMICA, 1997, 18 (01) : 111 - 121
  • [47] An O(log k)-Approximation Algorithm for the k Minimum Spanning Tree Problem in the Plane
    Garg, N.
    Hochbaum, D.S.
    Algorithmica (New York), 1997, 18 (01): : 111 - 121
  • [48] PTAS for k-Tour Cover Problem on the Plane for Moderately Large Values of k
    Adamaszek, Anna
    Czumaj, Artur
    Lingas, Andrzej
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 994 - +
  • [49] PTAS FOR k-TOUR COVER PROBLEM ON THE PLANE FOR MODERATELY LARGE VALUES OF k
    Adamaszek, Anna
    Czumaj, Artur
    Lingas, Andrzej
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2010, 21 (06) : 893 - 904
  • [50] Connection Problem
    Haraoka, Yoshishige
    LINEAR DIFFERENTIAL EQUATIONS IN THE COMPLEX DOMAIN: FROM CLASSICAL THEORY TO FOREFRONT, 2020, 2271 : 101 - 122