A Generalized Three-Wave Method for Nonlinear Evolution Equations

被引:0
|
作者
Liu, Chang-Fu
Zou, Min
机构
关键词
The (3+1)-dimensional soliton equation; solitary wave solutions; periodic solitary wave solutions; periodic solutions; EXP-FUNCTION METHOD; MATHEMATICAL PHYSICS; SOLITON-SOLUTIONS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A generalized three-wave method is proposed to construct a generalized traveling wave with different velocities and frequencies. The (3+1)-dimensional soliton equation is used as an example to illustrate the solution procedure, some new wave solutions with three different velocities and frequencies are obtained.
引用
收藏
页码:489 / 493
页数:5
相关论文
共 50 条
  • [31] New exact travelling wave solutions to three nonlinear evolution equations
    Sirendaoreji
    Applied Mathematics-A Journal of Chinese Universities, 2004, 19 (2) : 178 - 186
  • [32] The Tanh Function Method using a Generalized Wave Transformation for Nonlinear Equations
    Zayed, Elsayed M. E.
    Abdelaziz, Mahmoud A. M.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 (08) : 595 - 601
  • [33] The Three-Wave Resonant Interaction Equations: Spectral and Numerical Methods
    Antonio Degasperis
    Matteo Conforti
    Fabio Baronio
    Stefan Wabnitz
    Sara Lombardo
    Letters in Mathematical Physics, 2011, 96 : 367 - 403
  • [34] Toward a General Solution of the Three-Wave Partial Differential Equations
    Martin, Ruth A.
    Segur, Harvey
    STUDIES IN APPLIED MATHEMATICS, 2016, 137 (01) : 70 - 92
  • [35] Semiclassical Soliton Ensembles for the Three-Wave Resonant Interaction Equations
    R. J. Buckingham
    R. M. Jenkins
    P. D. Miller
    Communications in Mathematical Physics, 2017, 354 : 1015 - 1100
  • [36] Exact three-wave solutions for high nonlinear form of benjamin-bona-mahony-burgers equations
    Darvishi, Mohammad Taghi
    Najafi, Maliheh
    Najafi, Mohammad
    World Academy of Science, Engineering and Technology, 2010, 37 : 489 - 493
  • [37] Wave solutions of evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians
    Alber, MS
    Fedorov, YN
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (47): : 8409 - 8425
  • [38] A Novel Generalized Kudryashov Method for Exact Solutions of Nonlinear Evolution Equations
    Koparan, Murat
    Kaplan, Melike
    Bekir, Ahmet
    Guner, Ozkan
    ICNPAA 2016 WORLD CONGRESS: 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2017, 1798
  • [39] A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics
    Kaplan, Melike
    Bekir, Ahmet
    Akbulut, Arzu
    NONLINEAR DYNAMICS, 2016, 85 (04) : 2843 - 2850
  • [40] A Generalized and Improved (G′/G)-Expansion Method for Nonlinear Evolution Equations
    Akbar, M. Ali
    Ali, Norhashidah Hj. Mohd.
    Zayed, E. M. E.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012