Performance comparison of Nb and NbN antenna-coupled microbolometers

被引:2
|
作者
Dietlein, C. [1 ]
Luukanen, A. [2 ]
Penttila, J. S. [3 ]
Sipola, H. [3 ]
Gronberg, L. [3 ]
Seppa, H. [3 ]
Helisto, P. [3 ]
Grossman, E. N. [4 ]
机构
[1] Univ Colorado, Dept Elect & Comp Engn, 425 UCB, Boulder, CO 80309 USA
[2] Millimetre Wave Lab Finland MilliLab, Espoo 02044, Finland
[3] VTT Tech Res Ctr Finland, Espoo 02044, Finland
[4] Natl Inst Stand & Technol, Optoelect Div, Boulder, CO 80305 USA
关键词
bolometer; millimeter-wave; terahertz;
D O I
10.1117/12.719586
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report the experimental results of a comparison between free-standing Nb and NbN microbolometer bridges coupled to equiangular spiral antennas on Si substrates. Because of the difference in material resistivity, bolometer resistance and aspect ratio is varied independently. Room-temperature antenna patterns measured at 650 GHz with a backward-wave oscillator are presented, as are I-V curves at T = 300 K and at T = 4 K. At room temperature, zero-bias resistance and specific responsivity are examined, and at 4 K, normal-state resistance and saturation power are studied. Nb devices display significantly lower saturation powers than NbN devices whose dimensions have been adjusted to provide equal resistance. However, for both materials, the inferred thermal conductances are higher than predicted by the Wiedemann-Franz relation, by approximately a factor of similar to 2 for Nb and a factor of similar to 5 for NbN. In general, and especially for the room-temperature responsivity, the substantial spread in parameters from device to device exceeds any systematic difference in performance between the materials.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Antenna-coupled microbolometers
    Zerov, V. Yu
    Malyarov, V. G.
    Khrebtov, I. A.
    [J]. JOURNAL OF OPTICAL TECHNOLOGY, 2011, 78 (05) : 308 - 316
  • [2] Fabrication of antenna-coupled microbolometers
    Shimizu, T
    Moritsu, H
    Yasuoka, Y
    Gamo, K
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1995, 34 (12A): : 6352 - 6357
  • [3] Capabilities of antenna-coupled superconducting microbolometers
    Leonov, VN
    [J]. JOURNAL DE PHYSIQUE IV, 1998, 8 (P3): : 267 - 270
  • [4] Two dimensional array of antenna-coupled microbolometers
    González, FJ
    Gritz, MA
    Fumeaux, C
    Boreman, GD
    [J]. INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2002, 23 (05): : 785 - 797
  • [5] Two Dimensional Array of Antenna-Coupled Microbolometers
    F. J. González
    M. A. Gritz
    C. Fumeaux
    G. D. Boreman
    [J]. International Journal of Infrared and Millimeter Waves, 2002, 23 : 785 - 797
  • [6] Antenna-coupled uncooled Nb5N6 microbolometers for terahertz imaging
    Tu, X. C.
    Mao, Q. K.
    Xu, L.
    Wan, C.
    Sun, Z. L.
    Kang, L.
    Chen, J.
    Wu, P. H.
    [J]. TERAHERTZ PHYSICS, DEVICES, AND SYSTEMS VII: ADVANCED APPLICATIONS IN INDUSTRY AND DEFENSE, 2013, 8716
  • [7] Antenna-Coupled Terahertz Microbolometers with Meander Structures: the Comparison of Titanium and Platinum Thermistors
    Hiromoto, N.
    Banerjee, A.
    Durgadevi, E.
    Satoh, H.
    Apriono, C.
    Itoh, D.
    Bruendermann, E.
    Rahardjo, E. T.
    Inokawa, H.
    [J]. 2018 43RD INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2018,
  • [8] Technique for thermal isolation of antenna-coupled infrared microbolometers
    Middleton, C. F.
    Boreman, G. D.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2006, 24 (05): : 2356 - 2359
  • [9] Thermal-impedance simulations of antenna-coupled microbolometers
    Gonzalez, Francisco J.
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2006, 48 (03) : 223 - 226
  • [10] Thermal-impedance simulations of antenna-coupled microbolometers
    Gonzalez, Francisco J.
    [J]. Infrared Technology and Applications XXXII, Pts 1and 2, 2006, 6206 : D2061 - D2061