Room-Temperature Negative Differential Resistance in Graphene Field Effect Transistors: Experiments and Theory

被引:54
|
作者
Sharma, Pankaj [1 ]
Bernard, Laurent Syavoch [2 ]
Bazigos, Antonios [1 ]
Magrez, Arnaud [3 ]
Ionescu, Adrian M. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Nanoelect Devices Lab, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Lab Phys Complex Matter, CH-1015 Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Crystal Growth Facil, CH-1015 Lausanne, Switzerland
关键词
graphene; field effect transistor; negative differential resistance; chemical vapor deposition; CURRENT SATURATION; FILMS; DEVICES; DIODE;
D O I
10.1021/nn5059437
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper we demonstrate experimentally and discuss the negative differential resistance (NDR) in dual-gated graphene field effect transistors (GFETs) at room temperature for various channel lengths, ranging from 200 nm to 5 mu m. The GFETs were fabricated using chemically vapor-deposited graphene with a top gate oxide down to 2.5 nm of equivalent oxide thickness (EOT). We originally explain and demonstrate with systematic simulations that the onset of NDR occurs in the unipolar region itself and that the main mechanism behind NDR is associated with the competition between the specific field dependence of carrier density and the drift velocity in GFET. Finally, we show experimentally that NDR behavior can still be obtained with devices of higher EOTs; however, this comes at the cost of requiring higher bias values and achieving lower NDR level.
引用
收藏
页码:620 / 625
页数:6
相关论文
共 50 条
  • [1] Graphene field-effect transistors as room-temperature terahertz detectors
    L. Vicarelli
    M. S. Vitiello
    D. Coquillat
    A. Lombardo
    A. C. Ferrari
    W. Knap
    M. Polini
    V. Pellegrini
    A. Tredicucci
    Nature Materials, 2012, 11 : 865 - 871
  • [2] Graphene field-effect transistors as room-temperature terahertz detectors
    Vicarelli, L.
    Vitiello, M. S.
    Coquillat, D.
    Lombardo, A.
    Ferrari, A. C.
    Knap, W.
    Polini, M.
    Pellegrini, V.
    Tredicucci, A.
    NATURE MATERIALS, 2012, 11 (10) : 865 - 871
  • [3] Room-Temperature Graphene-Nanoribbon Tunneling Field-Effect Transistors
    Hwang, Wan Sik
    Zhao, Pei
    Kim, Sung Geun
    Yan, Rusen
    Klimeck, Gerhard
    Seabaugh, Alan
    Fullerton-Shirey, Susan K.
    Xing, Huili Grace
    Jena, Debdeep
    NPJ 2D MATERIALS AND APPLICATIONS, 2019, 3 (1)
  • [4] Room-Temperature Graphene-Nanoribbon Tunneling Field-Effect Transistors
    Wan Sik Hwang
    Pei Zhao
    Sung Geun Kim
    Rusen Yan
    Gerhard Klimeck
    Alan Seabaugh
    Susan K. Fullerton-Shirey
    Huili Grace Xing
    Debdeep Jena
    npj 2D Materials and Applications, 3
  • [5] Room-temperature terahertz detectors fabricated using graphene field-effect transistors
    Trohalaki, Steven
    MRS BULLETIN, 2012, 37 (11) : 987 - 987
  • [6] Negative differential resistance in graphene nanoribbon superlattice field-effect transistors
    Chang, Sheng
    Zhao, Lei
    Lv, Yawei
    Wang, Hao
    Huang, Qijun
    He, Jin
    MICRO & NANO LETTERS, 2015, 10 (08) : 400 - 403
  • [7] Room-temperature negative differential resistance in nanoscale molecular junctions
    Chen, J
    Wang, W
    Reed, MA
    Rawlett, AM
    Price, DW
    Tour, JM
    APPLIED PHYSICS LETTERS, 2000, 77 (08) : 1224 - 1226
  • [8] Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors
    Lin, Ming-Wei
    Ling, Cheng
    Zhang, Yiyang
    Yoon, Hyeun Joong
    Cheng, Mark Ming-Cheng
    Agapito, Luis A.
    Kioussis, Nicholas
    Widjaja, Noppi
    Zhou, Zhixian
    NANOTECHNOLOGY, 2011, 22 (26)
  • [9] Nano Focus: Room-temperature terahertz detectors fabricated using graphene field-effect transistors
    Steven Trohalaki
    MRS Bulletin, 2012, 37 : 987 - 987
  • [10] Negative Differential Resistance and Steep Switching in Chevron Graphene Nanoribbon Field-Effect Transistors
    Smith, Samuel
    Llinas, Juan-Pablo
    Bokor, Jeffrey
    Salahuddin, Sayeef
    IEEE ELECTRON DEVICE LETTERS, 2018, 39 (01) : 143 - 146