Maximum vertex-weighted matching in strongly chordal graphs

被引:2
|
作者
Campelo, MB [1 ]
Klein, S
机构
[1] Univ Fed Ceara, Dept Estat & Matemat Aplicada, BR-60455760 Fortaleza, Ceara, Brazil
[2] Univ Fed Rio de Janeiro, Dept Ciencia Comp IM & COPPE Sistemas, BR-21945970 Rio De Janeiro, Brazil
关键词
matching problems; strongly chordal graphs; linear programming;
D O I
10.1016/S0166-218X(97)00136-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a graph G=(V,E) and a real weight for each vertex of G, the vertex-weight of a matching is defined to be the sum of the weights of the vertices covered by the matching. In this paper we present a linear time algorithm for finding a maximum vertex-weighted matching in a strongly chordal graph, given a strong elimination ordering. The algorithm can be specialized to find a maximum cardinality matching, yielding an algorithm similar to one proposed earlier by Dahlhaus and Karpinsky. The technique does not seem to apply to the case of general edge-weighted matchings. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 50 条
  • [1] The ρ-moments of vertex-weighted graphs
    Chang, Caibing
    Ren, Haizhen
    Deng, Zijian
    Deng, Bo
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 400
  • [2] Vertex-weighted realizations of graphs
    Bar-Noy, Amotz
    Peleg, David
    Rawitz, Dror
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 807 : 56 - 72
  • [3] Vertex-weighted realizations of graphs
    Bar-Noy, Amotz
    Peleg, David
    Rawitz, Dror
    [J]. Peleg, David (david.peleg@weizmann.ac.il), 1600, Elsevier B.V. (807): : 56 - 72
  • [4] VERTEX-WEIGHTED GRAPHS AND THEIR APPLICATIONS
    Knisley, Debra J.
    Knisley, Jeff R.
    [J]. UTILITAS MATHEMATICA, 2014, 94 : 237 - 249
  • [5] Matching and multidimensional matching in chordal and strongly chordal graphs
    Dahlhaus, E
    Karpinski, M
    [J]. DISCRETE APPLIED MATHEMATICS, 1998, 84 (1-3) : 79 - 91
  • [6] Vertex-Weighted Matching in Two-Directional Orthogonal Ray Graphs
    Plaxton, C. Gregory
    [J]. ALGORITHMS AND COMPUTATION, 2013, 8283 : 524 - 534
  • [7] Nonsingular (vertex-weighted) block graphs
    Singh, Ranveer
    Zheng, Cheng
    Shaked-Monderer, Naomi
    Berman, Abraham
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 602 : 138 - 156
  • [8] On rectilinear duals for vertex-weighted plane graphs
    de Berg, Mark
    Mumford, Elena
    Speckmann, Bettina
    [J]. DISCRETE MATHEMATICS, 2009, 309 (07) : 1794 - 1812
  • [9] On rectilinear duals for vertex-weighted plane graphs
    de Berg, M
    Mumford, E
    Speckmann, B
    [J]. GRAPH DRAWING, 2006, 3843 : 61 - 72
  • [10] Max-Coloring of Vertex-Weighted Graphs
    Hsiang-Chun Hsu
    Gerard Jennhwa Chang
    [J]. Graphs and Combinatorics, 2016, 32 : 191 - 198