The ρ-moments of vertex-weighted graphs

被引:0
|
作者
Chang, Caibing [1 ]
Ren, Haizhen [1 ,2 ]
Deng, Zijian [1 ]
Deng, Bo [1 ,2 ]
机构
[1] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
[2] Acad Plateau Sci & Sustainabil, Xining 810008, Qinghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Topological index; Moment; Vertex-weighted graph; Extremal problem; MEAN DISTANCE; WIENER; INDEXES;
D O I
10.1016/j.amc.2021.126070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (G, rho) be a vertex-weighted graph of G together with the vertex set V and a function rho(V). A rho-moment of G at a given vertex u is defined as M-G(rho)(u) = Sigma(v is an element of V) rho(v)dist(u, v), where dist(., .) stands for the distance function. The rho-moment of G is the sum of moments of all vertices in G. This parameter is closely related to degree distance, Wiener index, Schultz index etc. Motivated by earlier work of Dalfo et al. (2013), we introduce three classes of hereditary graphs by vertex(edge)-grafting operations and give the expressions for computing their rho-moments, by which we compute the rho-moments of uniform(nonuniform) cactus chains and derive the order relations of rho-moments of uniform(nonuniform) cactus chains. Based on these relations, we discuss the extremal value problems of rho-moments in biphenyl and polycyclic hydrocarbons, and extremal polyphenyl chains, extremal spiro chains etc are given, respectively. This generalizes the results of Deng (2012). (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Vertex-weighted realizations of graphs
    Bar-Noy, Amotz
    Peleg, David
    Rawitz, Dror
    THEORETICAL COMPUTER SCIENCE, 2020, 807 : 56 - 72
  • [2] Vertex-weighted realizations of graphs
    Bar-Noy, Amotz
    Peleg, David
    Rawitz, Dror
    Peleg, David (david.peleg@weizmann.ac.il), 1600, Elsevier B.V. (807): : 56 - 72
  • [3] VERTEX-WEIGHTED GRAPHS AND THEIR APPLICATIONS
    Knisley, Debra J.
    Knisley, Jeff R.
    UTILITAS MATHEMATICA, 2014, 94 : 237 - 249
  • [4] Nonsingular (vertex-weighted) block graphs
    Singh, Ranveer
    Zheng, Cheng
    Shaked-Monderer, Naomi
    Berman, Abraham
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 602 : 138 - 156
  • [5] On rectilinear duals for vertex-weighted plane graphs
    de Berg, Mark
    Mumford, Elena
    Speckmann, Bettina
    DISCRETE MATHEMATICS, 2009, 309 (07) : 1794 - 1812
  • [6] On rectilinear duals for vertex-weighted plane graphs
    de Berg, M
    Mumford, E
    Speckmann, B
    GRAPH DRAWING, 2006, 3843 : 61 - 72
  • [7] Max-Coloring of Vertex-Weighted Graphs
    Hsiang-Chun Hsu
    Gerard Jennhwa Chang
    Graphs and Combinatorics, 2016, 32 : 191 - 198
  • [8] Max-Coloring of Vertex-Weighted Graphs
    Hsu, Hsiang-Chun
    Chang, Gerard Jennhwa
    GRAPHS AND COMBINATORICS, 2016, 32 (01) : 191 - 198
  • [9] Algorithms for Densest Subgraphs of Vertex-Weighted Graphs
    Liu, Zhongling
    Chen, Wenbin
    Li, Fufang
    Qi, Ke
    Wang, Jianxiong
    MATHEMATICS, 2024, 12 (14)
  • [10] Clustering Vertex-Weighted Graphs by Spectral Methods
    Garcia-Zapata, Juan-Luis
    Gracio, Clara
    MATHEMATICS, 2021, 9 (22)